Mostrar el registro sencillo del ítem

dc.contributor.author
Correndo, Adrián A.  
dc.contributor.author
Salvagiotti, Fernando  
dc.contributor.author
Garcia, Fernando Oscar  
dc.contributor.author
Gutiérrez Boem, Flavio Hernán  
dc.date.available
2018-06-14T21:07:13Z  
dc.date.issued
2017-04  
dc.identifier.citation
Correndo, Adrián A.; Salvagiotti, Fernando; Garcia, Fernando Oscar; Gutiérrez Boem, Flavio Hernán; A modification of the arcsine-log calibration curve for analysing soil test value-relative yield relationships; Csiro Publishing; Crop & Pasture Science; 68; 3; 4-2017; 297-304  
dc.identifier.issn
1836-5795  
dc.identifier.uri
http://hdl.handle.net/11336/48727  
dc.description.abstract
This article aims to discuss the arcsine-log calibration curve (ALCC) method designed for the Better Fertiliser Decisions for Cropping Systems (BFDC) to calibrate relationships between relative yield (RY) and soil test value (STV). Its main advantage lies in estimating confidence limits of the critical value (CSTV). Nevertheless, intervals for 95% confidence level are often too wide, and authors suggest a reduction in the confidence level to 70% in order to achieve narrower estimates. Still, this method can be further improved by modifying specific procedures. For this purpose, several datasets belonging to the BFDC were used. For any confidence level, estimates with the modified ALCC procedures were always more accurate than the original ALCC. The overestimation of confidence limits with the original ALCC was inversely related to the correlation coefficient of the dataset, which might allow a relatively simple and reliable correction of previous estimates. In addition, because the method is based on the correlation between STV and RY, the importance to test it for significance is emphasised in order to support the hypothesis of a relationship. Then, the modified ALCC approach could also allow a more reliable comparison of datasets by slopes of the bivariate linear relationship between transformed variables.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Csiro Publishing  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Bivariate Model  
dc.subject
Correlation  
dc.subject
Standardised Major Axis Regression.  
dc.subject.classification
Agricultura  
dc.subject.classification
Agricultura, Silvicultura y Pesca  
dc.subject.classification
CIENCIAS AGRÍCOLAS  
dc.title
A modification of the arcsine-log calibration curve for analysing soil test value-relative yield relationships  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-06-06T18:44:20Z  
dc.journal.volume
68  
dc.journal.number
3  
dc.journal.pagination
297-304  
dc.journal.pais
Australia  
dc.journal.ciudad
Collingwood  
dc.description.fil
Fil: Correndo, Adrián A.. International Plant Nutrition Institute; Argentina  
dc.description.fil
Fil: Salvagiotti, Fernando. Instituto Nacional de Tecnología Agropecuaria; Argentina  
dc.description.fil
Fil: Garcia, Fernando Oscar. International Plant Nutrition Institute; Argentina  
dc.description.fil
Fil: Gutiérrez Boem, Flavio Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones en Biociencias Agrícolas y Ambientales. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones en Biociencias Agrícolas y Ambientales; Argentina. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Ingeniería Agrícola y Uso de la Tierra. Cátedra de Fertilidad y Fertilizantes; Argentina  
dc.journal.title
Crop & Pasture Science  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1071/CP16444  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.publish.csiro.au/cp/CP16444