Artículo
Local approximation to the critical parameters of quantum wells
Fecha de publicación:
12/07/2013
Editorial:
Elsevier
Revista:
Applied Mathematics And Computation
ISSN:
0096-3003
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We calculate the critical parameters for some simple quantum wells by means of the Riccati–Padé method. The original approach converges reasonably well for nonzero angular-momentum quantum number l but rather too slowly for the s states. We therefore propose a simple modification that yields remarkably accurate results for the latter case. The rate of convergence of both methods increases with l and decreases with the radial quantum number n. We compare RPM results with WKB ones for sufficiently large values of l. As illustrative examples we choose the one-dimensional and central-field Gaussian wells as well as the Yukawa potential. The application of perturbation theory by means of the RPM to a class of rational potentials yields interesting and baffling unphysical results.
Palabras clave:
Quantum Wells
,
Critical Parameters
,
Riccati-Padé Method
,
Perturbation Theory
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(INIFTA)
Articulos de INST.DE INV.FISICOQUIMICAS TEORICAS Y APLIC.
Articulos de INST.DE INV.FISICOQUIMICAS TEORICAS Y APLIC.
Citación
Fernández, Francisco Marcelo; Garcia, Javier; Local approximation to the critical parameters of quantum wells; Elsevier; Applied Mathematics And Computation; 220; 12-7-2013; 580-592
Compartir
Altmétricas