Artículo
Large deviations for multiple ergodic averages
Fecha de publicación:
01/2018
Editorial:
Taylor & Francis
Revista:
Journal of Interdisciplinary Mathematics
ISSN:
0972-0502
e-ISSN:
2169-012X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The main purpose of this work is to estimate how multiple ergodic averages appart from a given quantity. This problem can be studied by describing a large deviation process for empirical measures as obtained by using the contraction principle. The case of single ergodic averages for empirical measures was already studied by Pfister and Sullivan [Nonlinarity, 10 (2005) 237-261]. To have a more complete picture on empirical measures and V– statistics, we estimate the size of the sets GK = {x : Lr (x) ⊂ K }, where Lr(x) is the limit-point set of the sequence of empirical measures and K is a compact subset of ℳ(Xr) with ℳ(X) the set of measures on X. In pasrticular, we obtain a variational formula for the topological entropy of Gk. The result of this work about the dimension of the sets Gk can be compared with the one recently circulated by Fan, Schemeling and Wu [arXiv:1206.3214v1 (2012)].
Palabras clave:
Large Deviations
,
Multiple Ergodic Averages
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IFLYSIB)
Articulos de INST.FISICA DE LIQUIDOS Y SIST.BIOLOGICOS (I)
Articulos de INST.FISICA DE LIQUIDOS Y SIST.BIOLOGICOS (I)
Citación
Meson, Alejandro Mario; Vericat, Fernando; Large deviations for multiple ergodic averages; Taylor & Francis; Journal of Interdisciplinary Mathematics; 20; 8; 1-2018; 1603-1617
Compartir
Altmétricas