Mostrar el registro sencillo del ítem

dc.contributor.author
Baglietto, Gabriel  
dc.contributor.author
Gigante, Guido  
dc.contributor.author
Del Giudice, Paolo  
dc.date.available
2018-06-08T18:53:00Z  
dc.date.issued
2017-04  
dc.identifier.citation
Baglietto, Gabriel; Gigante, Guido; Del Giudice, Paolo; Density-based clustering: A ‘landscape view’ of multi-channel neural data for inference and dynamic complexity analysis; Public Library of Science; Plos One; 12; 4; 4-2017; 1-25; e017491  
dc.identifier.uri
http://hdl.handle.net/11336/47939  
dc.description.abstract
Two, partially interwoven, hot topics in the analysis and statistical modeling of neural data, are the development of efficient and informative representations of the time series derived from multiple neural recordings, and the extraction of information about the connectivity structure of the underlying neural network from the recorded neural activities. In the present paper we show that state-space clustering can provide an easy and effective option for reducing the dimensionality of multiple neural time series, that it can improve inference of synaptic couplings from neural activities, and that it can also allow the construction of a compact representation of the multi-dimensional dynamics, that easily lends itself to complexity measures. We apply a variant of the ‘mean-shift’ algorithm to perform state-space clustering, and validate it on an Hopfield network in the glassy phase, in which metastable states are largely uncorrelated from memories embedded in the synaptic matrix. In this context, we show that the neural states identified as clusters’ centroids offer a parsimonious parametrization of the synaptic matrix, which allows a significant improvement in inferring the synaptic couplings from the neural activities. Moving to the more realistic case of a multi-modular spiking network, with spike-frequency adaptation inducing history-dependent effects, we propose a procedure inspired by Boltzmann learning, but extending its domain of application, to learn inter-module synaptic couplings so that the spiking network reproduces a prescribed pattern of spatial correlations; we then illustrate, in the spiking network, how clustering is effective in extracting relevant features of the network’s state-space landscape. Finally, we show that the knowledge of the cluster structure allows casting the multi-dimensional neural dynamics in the form of a symbolic dynamics of transitions between clusters; as an illustration of the potential of such reduction, we define and analyze a measure of complexity of the neural time series.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Public Library of Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Neuroscience  
dc.subject
Dimensional Reduction  
dc.subject
Inference  
dc.subject
Complexity Analysis  
dc.subject.classification
Otras Ciencias Físicas  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Density-based clustering: A ‘landscape view’ of multi-channel neural data for inference and dynamic complexity analysis  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-06-08T14:25:45Z  
dc.identifier.eissn
1932-6203  
dc.journal.volume
12  
dc.journal.number
4  
dc.journal.pagination
1-25; e017491  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
San Francisco  
dc.description.fil
Fil: Baglietto, Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina. Italian National Institute for Nuclear Research; Italia  
dc.description.fil
Fil: Gigante, Guido. Italian Institute of Health; Italia. Mperience; Italia  
dc.description.fil
Fil: Del Giudice, Paolo. Italian National Institute for Nuclear Research; Italia. Italian Institute of Health; Italia  
dc.journal.title
Plos One  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1371/journal.pone.0174918  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0174918