Mostrar el registro sencillo del ítem
dc.contributor.author
Baglietto, Gabriel

dc.contributor.author
Gigante, Guido
dc.contributor.author
Del Giudice, Paolo
dc.date.available
2018-06-08T18:53:00Z
dc.date.issued
2017-04
dc.identifier.citation
Baglietto, Gabriel; Gigante, Guido; Del Giudice, Paolo; Density-based clustering: A ‘landscape view’ of multi-channel neural data for inference and dynamic complexity analysis; Public Library of Science; Plos One; 12; 4; 4-2017; 1-25; e017491
dc.identifier.uri
http://hdl.handle.net/11336/47939
dc.description.abstract
Two, partially interwoven, hot topics in the analysis and statistical modeling of neural data, are the development of efficient and informative representations of the time series derived from multiple neural recordings, and the extraction of information about the connectivity structure of the underlying neural network from the recorded neural activities. In the present paper we show that state-space clustering can provide an easy and effective option for reducing the dimensionality of multiple neural time series, that it can improve inference of synaptic couplings from neural activities, and that it can also allow the construction of a compact representation of the multi-dimensional dynamics, that easily lends itself to complexity measures. We apply a variant of the ‘mean-shift’ algorithm to perform state-space clustering, and validate it on an Hopfield network in the glassy phase, in which metastable states are largely uncorrelated from memories embedded in the synaptic matrix. In this context, we show that the neural states identified as clusters’ centroids offer a parsimonious parametrization of the synaptic matrix, which allows a significant improvement in inferring the synaptic couplings from the neural activities. Moving to the more realistic case of a multi-modular spiking network, with spike-frequency adaptation inducing history-dependent effects, we propose a procedure inspired by Boltzmann learning, but extending its domain of application, to learn inter-module synaptic couplings so that the spiking network reproduces a prescribed pattern of spatial correlations; we then illustrate, in the spiking network, how clustering is effective in extracting relevant features of the network’s state-space landscape. Finally, we show that the knowledge of the cluster structure allows casting the multi-dimensional neural dynamics in the form of a symbolic dynamics of transitions between clusters; as an illustration of the potential of such reduction, we define and analyze a measure of complexity of the neural time series.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Public Library of Science

dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Neuroscience
dc.subject
Dimensional Reduction
dc.subject
Inference
dc.subject
Complexity Analysis
dc.subject.classification
Otras Ciencias Físicas

dc.subject.classification
Ciencias Físicas

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
Density-based clustering: A ‘landscape view’ of multi-channel neural data for inference and dynamic complexity analysis
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-06-08T14:25:45Z
dc.identifier.eissn
1932-6203
dc.journal.volume
12
dc.journal.number
4
dc.journal.pagination
1-25; e017491
dc.journal.pais
Estados Unidos

dc.journal.ciudad
San Francisco
dc.description.fil
Fil: Baglietto, Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina. Italian National Institute for Nuclear Research; Italia
dc.description.fil
Fil: Gigante, Guido. Italian Institute of Health; Italia. Mperience; Italia
dc.description.fil
Fil: Del Giudice, Paolo. Italian National Institute for Nuclear Research; Italia. Italian Institute of Health; Italia
dc.journal.title
Plos One

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1371/journal.pone.0174918
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0174918
Archivos asociados