Mostrar el registro sencillo del ítem

dc.contributor.author
Boari, Santiago  
dc.contributor.author
Yonatan Sanz Perl  
dc.contributor.author
Amador, Ana  
dc.contributor.author
Margoliash, Daniel  
dc.contributor.author
Mindlin, Bernardo Gabriel  
dc.date.available
2018-06-08T17:27:11Z  
dc.date.issued
2015-09  
dc.identifier.citation
Boari, Santiago; Yonatan Sanz Perl; Amador, Ana; Margoliash, Daniel; Mindlin, Bernardo Gabriel; Automatic reconstruction of physiological gestures used in a model of birdsong production; American Physiological Society; Journal of Neurophysiology; 114; 5; 9-2015; 2912-2922  
dc.identifier.issn
0022-3077  
dc.identifier.uri
http://hdl.handle.net/11336/47891  
dc.description.abstract
Highly coordinated learned behaviors are key to understanding neural processes integrating the body and the environment. Birdsong production is a widely studied example of such behavior in which numerous thoracic muscles control respiratory inspiration and expiration: the muscles of the syrinx control syringeal membrane tension, while upper vocal tract morphology controls resonances that modulate the vocal system output. All these muscles have to be coordinated in precise sequences to generate the elaborate vocalizations that characterize an individual´s song. Previously we used a low-dimensional description of the biomechanics of birdsong production to investigate the associated neural codes, an approach that complements traditional spectrographic analysis. The prior study used algorithmic yet manual procedures to model singing behavior. In the present work, we present an automatic procedure to extract low-dimensional motor gestures that could predict vocal behavior. We recorded zebra finch songs and generated synthetic copies automatically, using a biomechanical model for the vocal apparatus and vocal tract. This dynamical model described song as a sequence of physiological parameters the birds control during singing. To validate this procedure, we recorded electrophysiological activity of the telencephalic nucleus HVC. HVC neurons were highly selective to the auditory presentation of the bird´s own song (BOS) and gave similar selective responses to the automatically generated synthetic model of song (AUTO). Our results demonstrate meaningful dimensionality reduction in terms of physiological parameters that individual birds could actually control. Furthermore, this methodology can be extended to other vocal systems to study fine motor control.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Physiological Society  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Dynamical Systems  
dc.subject
Vocal Learning  
dc.subject
Bird'S Own Song  
dc.subject
Modeling Software  
dc.subject.classification
Astronomía  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.subject.classification
Astronomía  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Automatic reconstruction of physiological gestures used in a model of birdsong production  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-05-04T21:32:38Z  
dc.journal.volume
114  
dc.journal.number
5  
dc.journal.pagination
2912-2922  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Bethesda  
dc.description.fil
Fil: Boari, Santiago. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física. Laboratorio de Sistemas Dinámicos; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física. Laboratorio de Sistemas Dinámicos; Argentina  
dc.description.fil
Fil: Yonatan Sanz Perl. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física. Laboratorio de Sistemas Dinámicos; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física. Laboratorio de Sistemas Dinámicos; Argentina  
dc.description.fil
Fil: Amador, Ana. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física. Laboratorio de Sistemas Dinámicos; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física. Laboratorio de Sistemas Dinámicos; Argentina  
dc.description.fil
Fil: Margoliash, Daniel. University of Chicago; Estados Unidos  
dc.description.fil
Fil: Mindlin, Bernardo Gabriel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física. Laboratorio de Sistemas Dinámicos; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física. Laboratorio de Sistemas Dinámicos; Argentina  
dc.journal.title
Journal of Neurophysiology  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://jn.physiology.org/content/114/5/2912  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1152/jn.00385.2015