Mostrar el registro sencillo del ítem

dc.contributor.author
Pividori, Milton Damián  
dc.contributor.author
Stegmayer, Georgina  
dc.contributor.author
Milone, Diego Humberto  
dc.date.available
2018-06-07T21:06:08Z  
dc.date.issued
2016-09  
dc.identifier.citation
Pividori, Milton Damián; Stegmayer, Georgina; Milone, Diego Humberto; Diversity control for improving the analysis of consensus clustering; Elsevier Science Inc; Information Sciences; 361-362; 9-2016; 120-134  
dc.identifier.issn
0020-0255  
dc.identifier.uri
http://hdl.handle.net/11336/47804  
dc.description.abstract
Consensus clustering has emerged as a powerful technique for obtaining better clustering results, where a set of data partitions (ensemble) are generated, which are then combined to obtain a consolidated solution (consensus partition) that outperforms all of the members of the input set. The diversity of ensemble partitions has been found to be a key aspect for obtaining good results, but the conclusions of previous studies are contradictory. Therefore, ensemble diversity analysis is currently an important issue because there are no methods for smoothly changing the diversity of an ensemble, which makes it very difficult to study the impact of ensemble diversity on consensus results. Indeed, ensembles with similar diversity can have very different properties, thereby producing a consensus function with unpredictable behavior. In this study, we propose a novel method for increasing and decreasing the diversity of data partitions in a smooth manner by adjusting a single parameter, thereby achieving fine-grained control of ensemble diversity. The results obtained using well-known data sets indicate that the proposed method is effective for controlling the dissimilarity among ensemble members to obtain a consensus function with smooth behavior. This method is important for facilitating the analysis of the impact of ensemble diversity in consensus clustering.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science Inc  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
Cluster Ensembles  
dc.subject
Consensus Clustering  
dc.subject
Diversity Analysis  
dc.subject
Diversity Control  
dc.subject
Ensemble Diversity  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Diversity control for improving the analysis of consensus clustering  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-05-31T21:00:49Z  
dc.journal.volume
361-362  
dc.journal.pagination
120-134  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Pividori, Milton Damián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Centro de Investigación y Desarrollo de Ingeniería en Sistemas de Información; Argentina  
dc.description.fil
Fil: Stegmayer, Georgina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina  
dc.description.fil
Fil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina  
dc.journal.title
Information Sciences  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0020025516302705  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.ins.2016.04.027