Mostrar el registro sencillo del ítem
dc.contributor.author
Pividori, Milton Damián
dc.contributor.author
Stegmayer, Georgina
dc.contributor.author
Milone, Diego Humberto
dc.date.available
2018-06-07T21:06:08Z
dc.date.issued
2016-09
dc.identifier.citation
Pividori, Milton Damián; Stegmayer, Georgina; Milone, Diego Humberto; Diversity control for improving the analysis of consensus clustering; Elsevier Science Inc; Information Sciences; 361-362; 9-2016; 120-134
dc.identifier.issn
0020-0255
dc.identifier.uri
http://hdl.handle.net/11336/47804
dc.description.abstract
Consensus clustering has emerged as a powerful technique for obtaining better clustering results, where a set of data partitions (ensemble) are generated, which are then combined to obtain a consolidated solution (consensus partition) that outperforms all of the members of the input set. The diversity of ensemble partitions has been found to be a key aspect for obtaining good results, but the conclusions of previous studies are contradictory. Therefore, ensemble diversity analysis is currently an important issue because there are no methods for smoothly changing the diversity of an ensemble, which makes it very difficult to study the impact of ensemble diversity on consensus results. Indeed, ensembles with similar diversity can have very different properties, thereby producing a consensus function with unpredictable behavior. In this study, we propose a novel method for increasing and decreasing the diversity of data partitions in a smooth manner by adjusting a single parameter, thereby achieving fine-grained control of ensemble diversity. The results obtained using well-known data sets indicate that the proposed method is effective for controlling the dissimilarity among ensemble members to obtain a consensus function with smooth behavior. This method is important for facilitating the analysis of the impact of ensemble diversity in consensus clustering.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science Inc
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.subject
Cluster Ensembles
dc.subject
Consensus Clustering
dc.subject
Diversity Analysis
dc.subject
Diversity Control
dc.subject
Ensemble Diversity
dc.subject.classification
Ciencias de la Computación
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Diversity control for improving the analysis of consensus clustering
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-05-31T21:00:49Z
dc.journal.volume
361-362
dc.journal.pagination
120-134
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Pividori, Milton Damián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Centro de Investigación y Desarrollo de Ingeniería en Sistemas de Información; Argentina
dc.description.fil
Fil: Stegmayer, Georgina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
dc.description.fil
Fil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
dc.journal.title
Information Sciences
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0020025516302705
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.ins.2016.04.027
Archivos asociados