Artículo
Multi-objective optimisation of wavelet features for phoneme recognition
Fecha de publicación:
03/2016
Editorial:
Institution of Engineering and Technology
Revista:
Iet Signal Processing
ISSN:
1751-9675
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
State-of-the-art speech representations provide acceptable recognition results under optimal conditions, though their performance in adverse conditions still needs to be improved. In this direction, many advances involving wavelet processing have been reported, showing significant improvements in classification performance for different kinds of signals. However, for speech signals, the problem of finding a convenient wavelet-based representation is still an open challenge. This study proposes the use of a multi-objective genetic algorithm for the optimisation of a wavelet-based representation of speech. The most relevant features are selected from a complete wavelet packet decomposition in order to maximise phoneme classification performance. Classification results for English phonemes, in different noise conditions, show significant improvements compared with well-known speech representations.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(SINC(I))
Articulos de INST. DE INVESTIGACION EN SEÑALES, SISTEMAS E INTELIGENCIA COMPUTACIONAL
Articulos de INST. DE INVESTIGACION EN SEÑALES, SISTEMAS E INTELIGENCIA COMPUTACIONAL
Citación
Vignolo, Leandro Daniel; Rufiner, Hugo Leonardo; Milone, Diego Humberto; Multi-objective optimisation of wavelet features for phoneme recognition; Institution of Engineering and Technology; Iet Signal Processing; 10; 6; 3-2016; 685-694
Compartir
Altmétricas