Artículo
Normal development of spinal axons in early embryo stages and posterior locomotor function is independent of GAL-1
Fecha de publicación:
09/2017
Editorial:
Wiley-liss, Div John Wiley & Sons Inc
Revista:
Journal Of Comparative Neurology
ISSN:
0021-9967
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
It was recently described that Galectin-1 (Gal-1) promotes axonal growth after spinal cord injury. This effect depends on protein dimerization, since monomeric Gal-1 fails to stimulate axonal regrowth. Gal-1 is expressed in vivo at concentrations that favor the monomeric species. The aim of the present study is to investigate whether endogenous Gal-1 is required for spinal axon developmentand normal locomotor behavior in mice. In order to characterize axonal development, we used a novel combination of 3-DISCO technique with 1-photon microscopy and epifluorescence microscopy under high power LED illumination, followed by serial image section deconvolution and 3-D reconstruction. Cleared whole lgals-1-/- embryos were used to analyze the 3-D cytoarchitectureof motor, commissural, and sensory axons. This approach allowed us to evaluate axonal development, including the number of fibers, fluorescence density of the fiber tracts, fiber length as well as the morphology of axonal sprouting, deep within the tissue. Gal-1 deficient embryos did not show morphological/anatomical alterations in any of the axonal populations and parameters analyzed. In addition, specific guidance receptor PlexinA4 did not change its axonal localization in the absence of Gal-1. Finally, Gal-1 deficiency did not change normal locomotor activity in postnatal animals. Taken together, our results show that development of spinal axons as well as the locomotor abilities observed in adult mice are independent of Gal-1. Supporting our previous observations, the present study further validates the use of lgals-1-/- mice to develop spinal cord or traumatic brain injury models for the evaluation of the regenerative action of Gal-1.
Palabras clave:
Fluorescence Microscopy
,
Axon
,
Embryonic Development
,
Gal-1
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(OCA HOUSSAY)
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA HOUSSAY
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA HOUSSAY
Citación
Pasquini, Juana Maria; Barrantes, Francisco Jose; Quintá, Héctor Ramiro; Normal development of spinal axons in early embryo stages and posterior locomotor function is independent of GAL-1; Wiley-liss, Div John Wiley & Sons Inc; Journal Of Comparative Neurology; 525; 13; 9-2017; 2861-2875
Compartir
Altmétricas