Mostrar el registro sencillo del ítem

dc.contributor.author
Rast, M. P.  
dc.contributor.author
Pinton, J. F.  
dc.contributor.author
Mininni, Pablo Daniel  
dc.date.available
2018-06-07T14:28:30Z  
dc.date.issued
2016-04  
dc.identifier.citation
Rast, M. P.; Pinton, J. F.; Mininni, Pablo Daniel; Turbulent transport with intermittency: Expectation of a scalar concentration; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 93; 4; 4-2016; 4312001-4312010  
dc.identifier.issn
1539-3755  
dc.identifier.uri
http://hdl.handle.net/11336/47657  
dc.description.abstract
Scalar transport by turbulent flows is best described in terms of Lagrangian parcel motions. Here we measure the Eulerian distance travel along Lagrangian trajectories in a simple point vortex flow to determine the probabilistic impulse response function for scalar transport in the absence of molecular diffusion. As expected, the mean squared Eulerian displacement scales ballistically at very short times and diffusively for very long times, with the displacement distribution at any given time approximating that of a random walk. However, significant deviations in the displacement distributions from Rayleigh are found. The probability of long distance transport is reduced over inertial range time scales due to spatial and temporal intermittency. This can be modeled as a series of trapping events with durations uniformly distributed below the Eulerian integral time scale. The probability of long distance transport is, on the other hand, enhanced beyond that of the random walk for both times shorter than the Lagrangian integral time and times longer than the Eulerian integral time. The very short-time enhancement reflects the underlying Lagrangian velocity distribution, while that at very long times results from the spatial and temporal variation of the flow at the largest scales. The probabilistic impulse response function, and with it the expectation value of the scalar concentration at any point in space and time, can be modeled using only the evolution of the lowest spatial wave number modes (the mean and the lowest harmonic) and an eddy based constrained random walk that captures the essential velocity phase relations associated with advection by vortex motions. Preliminary examination of Lagrangian tracers in three-dimensional homogeneous isotropic turbulence suggests that transport in that setting can be similarly modeled.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Physical Society  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Diffusion  
dc.subject
Particles  
dc.subject
Turbulence  
dc.subject.classification
Astronomía  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Turbulent transport with intermittency: Expectation of a scalar concentration  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-06-01T13:55:24Z  
dc.journal.volume
93  
dc.journal.number
4  
dc.journal.pagination
4312001-4312010  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
New York  
dc.description.fil
Fil: Rast, M. P.. State University of Colorado Boulder; Estados Unidos  
dc.description.fil
Fil: Pinton, J. F.. Centre National de la Recherche Scientifique; Francia  
dc.description.fil
Fil: Mininni, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina  
dc.journal.title
Physical Review E: Statistical, Nonlinear and Soft Matter Physics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://journals.aps.org/pre/abstract/10.1103/PhysRevE.93.043120  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1103/PhysRevE.93.043120