Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Empirical Mode Decomposition for adaptive AM-FM analysis of Speech: A Review

Sharma, Rajib; Vignolo, Leandro DanielIcon ; Schlotthauer, GastonIcon ; Colominas, Marcelo AlejandroIcon ; Rufiner, Hugo LeonardoIcon ; Prasanna, S. R. M.
Fecha de publicación: 04/2017
Editorial: Elsevier Science
Revista: Speech Communication
ISSN: 0167-6393
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ingeniería de Sistemas y Comunicaciones

Resumen

This work reviews the advancements in the non-conventional analysis of speech signals, particularly from an AM-FM analysis point of view. The benefits of such an analysis, as opposed to the traditional shorttime analysis of speech, is illustrated in this work. The inherent non-linearity of the speech productionsystem is discussed. The limitations of Fourier analysis, Linear Prediction (LP) analysis, and the Mel Filterbank Cepstral Coefficients (MFCCs), are presented, thus providing the motivation for the AM-FM representation of speech. The principle and methodology of traditional AM-FM analysis is discussed, as amethod of capturing the non-linear dynamics of the speech signal. The technique of Empirical Mode Decomposition (EMD) is then introduced as a means of performing adaptive AM-FM analysis of speech, alleviating the limitations of the fixed analysis provided by the traditional AM-FM methodology. The merits and demerits of EMD with respect to traditional AM-FM analysis is discussed. The developments of EMD to counter its demerits are presented. Selected applications of EMD in speech processing are briefly reviewed. The paper concludes by pointing out some aspects of speech processing where EMD might be explored.
Palabras clave: Emd , Am-Fm , Wavelet , Lp , Mfcc , Speech Processing
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 4.602Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/47574
URL: http://www.sciencedirect.com/science/article/pii/S0167639316302370
DOI: https://doi.org/10.1016/j.specom.2016.12.004
Colecciones
Articulos(SINC(I))
Articulos de INST. DE INVESTIGACION EN SEÑALES, SISTEMAS E INTELIGENCIA COMPUTACIONAL
Citación
Sharma, Rajib; Vignolo, Leandro Daniel; Schlotthauer, Gaston; Colominas, Marcelo Alejandro; Rufiner, Hugo Leonardo; et al.; Empirical Mode Decomposition for adaptive AM-FM analysis of Speech: A Review; Elsevier Science; Speech Communication; 88; 4-2017; 39-64
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES