Mostrar el registro sencillo del ítem

dc.contributor.author
Albornoz, Enrique Marcelo
dc.contributor.author
Milone, Diego Humberto
dc.contributor.author
Rufiner, Hugo Leonardo
dc.date.available
2018-06-06T19:46:22Z
dc.date.issued
2016-03
dc.identifier.citation
Albornoz, Enrique Marcelo; Milone, Diego Humberto; Rufiner, Hugo Leonardo; Feature extraction based on bio-inspired model for robust emotion recognition; Springer Heidelberg; Soft Computing - (Print); 21; 17; 3-2016; 5145-5158
dc.identifier.issn
1472-7643
dc.identifier.uri
http://hdl.handle.net/11336/47569
dc.description.abstract
Emotional state identification is an important issue to achieve more natural speech interactive systems. Ideally, these systems should also be able to work in real environments in which generally exist some kind of noise. Several bio-inspired representations have been applied to artificial systems for speech processing under noise conditions. In this work, an auditory signal representation is used to obtain a novel bio-inspired set of features for emotional speech signals. These characteristics, together with other spectral and prosodic features, are used for emotion recognition under noise conditions. Neural models were trained as classifiers and results were compared to the well-known mel-frequency cepstral coefficients. Results show that using the proposed representations, it is possible to significantly improve the robustness of an emotion recognition system. The results were also validated in a speaker independent scheme and with two emotional speech corpora.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer Heidelberg
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Robust Emotion Recognition
dc.subject
Auditory Representation
dc.subject
Multilayer Perceptron
dc.subject.classification
Ciencias de la Computación
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Feature extraction based on bio-inspired model for robust emotion recognition
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-05-31T18:18:15Z
dc.journal.volume
21
dc.journal.number
17
dc.journal.pagination
5145-5158
dc.journal.pais
Alemania
dc.journal.ciudad
Heidelberg
dc.description.fil
Fil: Albornoz, Enrique Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
dc.description.fil
Fil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
dc.description.fil
Fil: Rufiner, Hugo Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
dc.journal.title
Soft Computing - (Print)
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007%2Fs00500-016-2110-5
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1007/s00500-016-2110-5


Archivos asociados

 

Comunidades y colecciones

  • Articulos(SINC(I)) [47]
    Articulos de INST. DE INVESTIGACION EN SE?ALES, SISTEMAS E INTELIGENCIA COMPUTACIONAL

Mostrar el registro sencillo del ítem