Artículo
Mechanical effects on the electronic properties of a biphenyl based molecular switch
Fecha de publicación:
10/02/2015
Editorial:
American Chemical Society
Revista:
Journal of Physical Chemistry C
ISSN:
1932-7447
e-ISSN:
1932-7455
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Using a combination of density functional theory and nonequilibrium Green’s function calculations, the effect of mechanically stretching a biphenyl-based molecular switch bonded to Au electrodes was studied. Thermodynamic and transport properties of the high- and low-conductance species were analyzed. A disulfide functionality bridging the aromatic rings was used to switch between the high- and low-conductance species. The potential of such a system as a molecular device has already been confirmed ( J. Phys. Chem. C 2013, 117, 25724). Mechanically stretching the molecular junction has major effects on both the thermodynamics of the switching reaction and the conductance ratio between the high- and low-conductance species involved in the molecular switch. It is also shown that the conductance of each individual species can be modulated by means of an external mechanical force, thus providing a dual switching mechanism for the proposed system.
Palabras clave:
Biphenyl
,
Molecular Electronics
,
Dft
,
Mechanochemistry
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(INFIQC)
Articulos de INST.DE INVESTIGACIONES EN FISICO- QUIMICA DE CORDOBA
Articulos de INST.DE INVESTIGACIONES EN FISICO- QUIMICA DE CORDOBA
Citación
Zoloff Michoff, Martin Eduardo; Castillo, Marcelo Ezequiel; Leiva, Ezequiel Pedro M.; Mechanical effects on the electronic properties of a biphenyl based molecular switch; American Chemical Society; Journal of Physical Chemistry C; 119; 9; 10-2-2015; 5090-5097
Compartir
Altmétricas