Mostrar el registro sencillo del ítem
dc.contributor.author
Monti, José Luis Eugenio
dc.contributor.author
Montes, Monica Raquel
dc.contributor.author
Rossi, Rolando Carlos
dc.date.available
2018-06-04T21:34:58Z
dc.date.issued
2018-01
dc.identifier.citation
Monti, José Luis Eugenio; Montes, Monica Raquel; Rossi, Rolando Carlos; Steady-state analysis of enzymes with non-Michaelis-Menten kinetics: The transport mechanism of Na + /K + -ATPase; American Society for Biochemistry and Molecular Biology; Journal of Biological Chemistry (online); 293; 4; 1-2018; 1373-1385
dc.identifier.issn
1083-351X
dc.identifier.uri
http://hdl.handle.net/11336/47264
dc.description.abstract
Procedures to define kinetic mechanisms from catalytic activity measurements that obey the Michaelis-Menten equation are well-established. In contrast, analytical tools for enzymes displaying non-Michaelis-Menten kinetics are underdeveloped and transient-state measurements, when feasible, are therefore preferred in kinetic studies. Of note, transient-state determinations evaluate only partial reactions, and these might not participate in the reaction cycle. Here, we provide a general procedure to characterize kinetic mechanisms from steady-state determinations. We described non-Michaelis-Menten kinetics with equations containing parameters equivalent to kcat and KM and modeled the underlying mechanism by an approach similar to that used under Michaelis-Menten kinetics. The procedure enabled us to evaluate whether Na+/K+-ATPase uses the same sites to alternatively transportNa+ andK+. This ping-pong mechanism is supported by transient-state studies but contradicted to date by steady-state analyses claiming that the release of one cationic species as product requires the binding of the other (ternary-complex mechanism). To derive robust conclusions about Na+/K+- ATPase transport mechanism, we did not rely onATPase activity measurements alone. During the catalytic cycle, the transported cations become transitorily occluded (i.e. trapped within the enzyme). We employed radioactive isotopes to quantify occluded cations under steady-state conditions. We replaced K+ with Rb+ since 42K+ has a short half-life and previous studies showed that K+- and Rb+-occluded reaction intermediates are similar. We derived conclusions regarding the rate of Rb+-deocclusion that were verified by direct measurements. Our results validated the ping-pong mechanism and proved that Rb+-deocclusion is accelerated when Na+ binds to an allosteric, unspecific site, leading to a two-fold increase in ATPase activity.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
American Society for Biochemistry and Molecular Biology
dc.rights
info:eu-repo/semantics/embargoedAccess
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/
dc.subject
Non-Michaelis-Menten Kinetics
dc.subject
Na+/K+-Atpase
dc.subject
Allosteric Regulation
dc.subject
Steady-State Kinetics
dc.subject.classification
Otras Ciencias Biológicas
dc.subject.classification
Ciencias Biológicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Steady-state analysis of enzymes with non-Michaelis-Menten kinetics: The transport mechanism of Na + /K + -ATPase
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-06-04T17:18:30Z
dc.journal.volume
293
dc.journal.number
4
dc.journal.pagination
1373-1385
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Bethesda
dc.description.fil
Fil: Monti, José Luis Eugenio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Físico-Química Biológicas ; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Química Biológica; Argentina
dc.description.fil
Fil: Montes, Monica Raquel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Físico-Química Biológicas ; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Química Biológica; Argentina
dc.description.fil
Fil: Rossi, Rolando Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Físico-Química Biológicas ; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Química Biológica; Argentina
dc.journal.title
Journal of Biological Chemistry (online)
dc.rights.embargoDate
2019-02-01
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.jbc.org/lookup/doi/10.1074/jbc.M117.799536
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://doi.org/10.1074/jbc.M117.799536
Archivos asociados