Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Discriminative methods based on sparse representations of pulse oximetry signals for sleep apnea–hypopnea detection

Rolon, Roman EmanuelIcon ; Larrateguy, Luis Darío; Di Persia, Leandro EzequielIcon ; Spies, Ruben DanielIcon ; Rufiner, Hugo LeonardoIcon
Fecha de publicación: 03/2017
Editorial: Elsevier
Revista: Biomedical Signal Processing and Control
ISSN: 1746-8094
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ingeniería de Sistemas y Comunicaciones

Resumen

The obstructive sleep apnea?hypopnea (OSAH) syndrome is a very common and generally undiagnosed sleep disorder. It is caused by repeated events of partial or total obstruction of the upper airway while sleeping. This work introduces two novel approaches called most dicriminative activation selection (MDAS) and most discriminative column selection (MDCS) for the detection of apnea?hypopnea events using only pulse oximetry signals. These approaches use discriminative information of sparse representations of the signals to detect apnea?hypopnea events. Complete (CD) and overcomplete (OD) dictionaries, and three different strategies (FULL sparse representation, MDAS, and MDCS), are considered. Thus, six methods (FULL-OD, MDAS-OD, MDCS-OD, FULL-CD, MDAS-CD, and MDCS-CD) emerge. It is shown that MDCS-OD outperforms all the others methods. A receiver operating characteristic (ROC) curve analysis of this method shows an area under the curve of 0.937 and diagnostic sensitivity and specificity percentages of 85.65 and 85.92, respectively. This shows that sparse representation of pulse oximetry signals is a very valuable tool for estimating apnea?hypopnea indices. The implementation of the MDCS-OD method could be embedded into the oximeter so as to be used by primary attention clinical physicians in the search and detection of patients suspected of suffering from OSAH.
Palabras clave: Sleep Apneahypopnea Syndrome , Sparse Representations , Dictionary Learning , Neural Networks
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.208Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/47063
URL: http://www.sciencedirect.com/science/article/pii/S1746809416302257
DOI: https://doi.org/10.1016/j.bspc.2016.12.013
Colecciones
Articulos(IMAL)
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Articulos(SINC(I))
Articulos de INST. DE INVESTIGACION EN SEÑALES, SISTEMAS E INTELIGENCIA COMPUTACIONAL
Citación
Rolon, Roman Emanuel; Larrateguy, Luis Darío; Di Persia, Leandro Ezequiel; Spies, Ruben Daniel; Rufiner, Hugo Leonardo; Discriminative methods based on sparse representations of pulse oximetry signals for sleep apnea–hypopnea detection; Elsevier; Biomedical Signal Processing and Control; 33; 3-2017; 358-367
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES