Artículo
Ideal structures in vector-valued polynomial spaces
Fecha de publicación:
10/2016
Editorial:
Banach Mathematical Research Group
Revista:
Banach Journal Of Mathematical Analysis
ISSN:
1735-8787
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
This paper is concerned with the study of geometric structures in spaces of polynomials. More precisely, we discuss for E and F Banach spaces, whether the class of n-homogeneous polynomials, Pw(nE,F), which are weakly continuous on bounded sets, is an HB-subspace or an M(1,C)-ideal in the space of continuous n-homogeneous polynomials, P(nE,F). We establish sufficient conditions under which the problem can be positively solved. Some examples are given. We also study when some ideal structures pass from Pw(nE,F) as an ideal in P(nE,F) to the range space F as an ideal in its bidual F∗∗.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Dimant, Veronica Isabel; Lassalle, Silvia Beatriz; Prieto, Angeles; Ideal structures in vector-valued polynomial spaces; Banach Mathematical Research Group; Banach Journal Of Mathematical Analysis; 10; 4; 10-2016; 686-702
Compartir
Altmétricas