Mostrar el registro sencillo del ítem

dc.contributor.author
Yones, Cristian Ariel  
dc.contributor.author
Stegmayer, Georgina  
dc.contributor.author
Milone, Diego Humberto  
dc.date.available
2018-06-01T19:47:23Z  
dc.date.issued
2017-09  
dc.identifier.citation
Yones, Cristian Ariel; Stegmayer, Georgina; Milone, Diego Humberto; Genome-wide pre-miRNA discovery from few labeled examples; Oxford University Press; Bioinformatics (Oxford, England); 34; 4; 9-2017; 541-549  
dc.identifier.issn
1367-4803  
dc.identifier.uri
http://hdl.handle.net/11336/47024  
dc.description.abstract
MOTIVATION:Although many machine learning techniques have been proposed for distinguishing miRNA hairpins from other stem-loop sequences, most of the current methods use supervised learning, which requires a very good set of positive and negative examples. Those methods have important practical limitations when they have to be applied to a real prediction task. First, there is the challenge of dealing with a scarce number of positive (well-known) pre-miRNA examples. Secondly, it is very difficult to build a good set of negative examples for representing the full spectrum of non-miRNA sequences. Thirdly, in any genome, there is a huge class imbalance (1: 10 000) that is well-known for particularly affecting supervised classifiers.RESULTS:To enable efficient and speedy genome-wide predictions of novel miRNAs, we present miRNAss, which is a novel method based on semi-supervised learning. It takes advantage of the information provided by the unlabeled stem-loops, thereby improving the prediction rates, even when the number of labeled examples is low and not representative of the classes. An automatic method for searching negative examples to initialize the algorithm is also proposed so as to spare the user this difficult task. MiRNAss obtained better prediction rates and shorter execution times than state-of-the-art supervised methods. It was validated with genome-wide data from three model species, with more than one million of hairpin sequences each, thereby demonstrating its applicability to a real prediction task.AVAILABILITY AND IMPLEMENTATION:An R package can be downloaded from https://cran.r-project.org/package=miRNAss. In addition, a web-demo for testing the algorithm is available at http://fich.unl.edu.ar/sinc/web-demo/mirnass. All the datasets that were used in this study and the sets of predicted pre-miRNA are available on http://sourceforge.net/projects/sourcesinc/files/mirnass.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Oxford University Press  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Semi-Supervised Learning  
dc.subject
Pre-Mirna Prediction  
dc.subject
Graphs  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Genome-wide pre-miRNA discovery from few labeled examples  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-05-31T18:19:00Z  
dc.journal.volume
34  
dc.journal.number
4  
dc.journal.pagination
541-549  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Oxford  
dc.description.fil
Fil: Yones, Cristian Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina  
dc.description.fil
Fil: Stegmayer, Georgina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina  
dc.description.fil
Fil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina  
dc.journal.title
Bioinformatics (Oxford, England)  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://academic.oup.com/bioinformatics/article/doi/10.1093/bioinformatics/btx612/4222633/Genomewide-premiRNA-discovery-from-few-labeled  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1093/bioinformatics/btx612