Artículo
Macrophages derived from septic mice modulate nitric oxide synthase and angiogenic mediators in the heart
de la Torre, Eulalia
; Hovsepian, Eugenia
; Penas, Federico Nicolás
; Dmytrenko, Ganna
; Castro, Maria Ester
; Goren, Nora Beatriz
; Sales, Maria Elena
Fecha de publicación:
01/2013
Editorial:
Wiley
Revista:
Journal of Cellular Physiology
ISSN:
0021-9541
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Macrophages (Mps) can exert the defense against invading pathogens. During sepsis, bacterial lipopolisaccharide (LPS) activates the production of inflammatory mediators by Mps. Nitric oxide synthase (NOS) derived-nitric oxide (NO) is one of them. Besides, Mps may produce pro-angiogenic molecules such as vascular endothelial growth factor-A (VEGF-A) and metalloproteinases (MMPs). The mechanisms involved in the cardiac neovascular response by Mps during sepsis are not completely known. We investigated the ability of LPS-treated Mps from septic mice to modulate the behavior of cardiac cells as producers of NO and angiogenic molecules. In vivo LPS treatment (0.1 mg/mouse) increased NO production more than 4 fold and induced de novo NOS2 expression in Mps. Immunoblotting assays also showed an induction in VEGF-A and MMP-9 expression in lysates obtained from LPS-treated Mps, and in MMP-9 activity detected in cell supernatants. LPS-activated Mps co-cultured with normal heart induced the expression of CD31 and VEGF-A in heart homogenates and increased MMP-9 activity in the supernatants. By immunohistochemistry, we detected new blood vessel formation in hearts cultured with LPS treated Mps. When LPS-stimulated Mps were co-cultured with isolated cardiomyocytes in a transwell assay, the expression of NOS2, VEGF-A and MMP-9 was induced in cardiac cells. In addition, MMP-9 activity was up-regulated in the supernatant of cardiomyocytes. The latter was due to NOS2 induction in Mps from in vivo LPS-treated mice. In conclusion LPS-treated Mps are inducers of inflammatory/angiogenic mediators in cardiac cells, which could be triggering neovascularization, as an attempt to improve cardiac performance in sepsis.
Palabras clave:
Macrophages
,
Nitric Oxide Synthase
,
Heart
,
Lps
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CEFYBO)
Articulos de CENTRO DE ESTUDIOS FARMACOLOGICOS Y BOTANICOS
Articulos de CENTRO DE ESTUDIOS FARMACOLOGICOS Y BOTANICOS
Articulos(CIVETAN)
Articulos de CENTRO DE INVESTIGACION VETERINARIA DE TANDIL
Articulos de CENTRO DE INVESTIGACION VETERINARIA DE TANDIL
Articulos(IMPAM)
Articulos de INSTITUTO DE INVESTIGACIONES EN MICROBIOLOGIA Y PARASITOLOGIA MEDICA
Articulos de INSTITUTO DE INVESTIGACIONES EN MICROBIOLOGIA Y PARASITOLOGIA MEDICA
Citación
de la Torre, Eulalia; Hovsepian, Eugenia; Penas, Federico Nicolás; Dmytrenko, Ganna; Castro, Maria Ester; et al.; Macrophages derived from septic mice modulate nitric oxide synthase and angiogenic mediators in the heart; Wiley; Journal of Cellular Physiology; 228; 7; 1-2013; 1584-1593
Compartir