Artículo
A polyhedral study of the maximum stable set problem with weights on vertex-subsets
Campêlo, Manoel; Campos, Victor A.; Corrêa, Ricardo C.; Delle Donne, Diego Andrés; Marenco, Javier Leonardo; Mydlarz, Marcelo
Fecha de publicación:
09/2016
Editorial:
Elsevier Science
Revista:
Discrete Applied Mathematics
ISSN:
0166-218X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Given a graph G = (V, E), a family of nonempty vertex-subsets S ⊆ 2 V , and a weight w : S → R+, the maximum stable set problem with weights on vertex-subsets consists in finding a stable set I of G maximizing the sum of the weights of the sets in S that intersect I. This problem arises within a natural column generation approach for the vertex coloring problem. In this work we perform an initial polyhedral study of this problem, by introducing a natural integer programming formulation and studying the associated polytope. We address general facts on this polytope including some lifting results, we provide connections with the stable set polytope, and we present three families of facet-inducing inequalities.
Palabras clave:
Maximum Stable Set
,
Integer Programming
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Campêlo, Manoel; Campos, Victor A.; Corrêa, Ricardo C.; Delle Donne, Diego Andrés; Marenco, Javier Leonardo; et al.; A polyhedral study of the maximum stable set problem with weights on vertex-subsets; Elsevier Science; Discrete Applied Mathematics; 210; 9-2016; 223-234
Compartir
Altmétricas