Mostrar el registro sencillo del ítem
dc.contributor.author
de Leo, Mariano Fernando

dc.contributor.author
Rial, Diego Fernando

dc.contributor.author
Sanchez Fernandez de la Vega, Constanza Mariel

dc.date.available
2018-05-30T18:49:09Z
dc.date.issued
2016-10
dc.identifier.citation
de Leo, Mariano Fernando; Rial, Diego Fernando; Sanchez Fernandez de la Vega, Constanza Mariel; High-order time-splitting methods for irreversible equations
; Oxford University Press; Ima Journal Of Numerical Analysis; 36; 4; 10-2016; 1842-1866
dc.identifier.issn
0272-4979
dc.identifier.uri
http://hdl.handle.net/11336/46700
dc.description.abstract
In this work, high-order splitting methods of integration without negative steps are shown which can be used in irreversible problems, like reaction–diffusion or complex Ginzburg–Landau equations. These methods consist of suitable affine combinations of Lie–Tortter schemes with different positive steps. The number of basic steps for these methods grows quadratically with the order, while for symplectic methods, the growth is exponential. Furthermore, the calculations can be performed in parallel, so that the computation time can be significantly reduced using multiple processors. Convergence results of these methods are proved for a large range of semilinear problems, which includes reaction–diffusion systems and dissipative perturbation of Hamiltonian systems.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Oxford University Press

dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Splitting Methods
dc.subject
Irreversible Dynamics
dc.subject
High-Oder Method
dc.subject.classification
Matemática Pura

dc.subject.classification
Matemáticas

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
High-order time-splitting methods for irreversible equations
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-05-30T18:24:30Z
dc.journal.volume
36
dc.journal.number
4
dc.journal.pagination
1842-1866
dc.journal.pais
Reino Unido

dc.journal.ciudad
Oxford
dc.description.fil
Fil: de Leo, Mariano Fernando. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Rial, Diego Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
dc.description.fil
Fil: Sanchez Fernandez de la Vega, Constanza Mariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
dc.journal.title
Ima Journal Of Numerical Analysis

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1093/imanum/drv058
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/imajna/article-abstract/36/4/1842/2198364
Archivos asociados