Mostrar el registro sencillo del ítem

dc.contributor.author
Yoon, Seog Joon  
dc.contributor.author
Guo, Zhi  
dc.contributor.author
Dos Santos Claro, Paula Cecilia  
dc.contributor.author
Shevchenko, Elena V.  
dc.contributor.author
Huang, Libai  
dc.date.available
2018-05-30T12:14:42Z  
dc.date.issued
2016-07  
dc.identifier.citation
Yoon, Seog Joon; Guo, Zhi; Dos Santos Claro, Paula Cecilia; Shevchenko, Elena V.; Huang, Libai; Direct Imaging of Long-Range Exciton Transport in Quantum Dot Superlattices by Ultrafast Microscopy; American Chemical Society; ACS Nano; 10; 7; 7-2016; 7208-7215  
dc.identifier.issn
1936-0851  
dc.identifier.uri
http://hdl.handle.net/11336/46559  
dc.description.abstract
Long-range charge and exciton transport in quantum dot (QD) solids is a crucial challenge in utilizing QDs for optoelectronic applications. Here, we present a direct visualization of exciton diffusion in highly ordered CdSe QDs superlattices by mapping exciton population using ultrafast transient absorption microscopy. A temporal resolution of ∼200 fs and a spatial precision of ∼50 nm of this technique provide a direct assessment of the upper limit for exciton transport in QD solids. An exciton diffusion length of ∼125 nm has been visualized in the 3 ns experimental time window and an exciton diffusion coefficient of (2.5 ± 0.2) × 10–2 cm2 s–1 has been measured for superlattices constructed from 3.6 nm CdSe QDs with center-to-center distance of 6.7 nm. The measured exciton diffusion constant is in good agreement with Förster resonance energy transfer theory. We have found that exciton diffusion is greatly enhanced in the superlattices over the disordered films with an order of magnitude higher diffusion coefficient, pointing toward the role of disorder in limiting transport. This study provides important understandings on energy transport mechanisms in both the spatial and temporal domains in QD solids.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Chemical Society  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Energy Transfer  
dc.subject
Femtosecond Transient Absorption  
dc.subject
Spectroscopy  
dc.subject
Pump-Probe Microscopy  
dc.subject
Exciton Diffusion  
dc.subject
Quantum Dot Solids  
dc.subject.classification
Nano-materiales  
dc.subject.classification
Nanotecnología  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Direct Imaging of Long-Range Exciton Transport in Quantum Dot Superlattices by Ultrafast Microscopy  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-05-29T18:35:19Z  
dc.journal.volume
10  
dc.journal.number
7  
dc.journal.pagination
7208-7215  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Washington  
dc.description.fil
Fil: Yoon, Seog Joon. University of Notre Dame-Indiana; Estados Unidos  
dc.description.fil
Fil: Guo, Zhi. Purdue University; Estados Unidos  
dc.description.fil
Fil: Dos Santos Claro, Paula Cecilia. Argonne National Laboratory; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Shevchenko, Elena V.. Argonne National Laboratory; Estados Unidos  
dc.description.fil
Fil: Huang, Libai. Purdue University; Estados Unidos  
dc.journal.title
ACS Nano  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1021/acsnano.6b03700  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acsnano.6b03700