Mostrar el registro sencillo del ítem

dc.contributor.author
Gonçalves, Bruna Amin  
dc.contributor.author
Carpi, Laura  
dc.contributor.author
Rosso, Osvaldo Aníbal  
dc.contributor.author
Ravetti, Martín G.  
dc.date.available
2018-05-29T21:37:21Z  
dc.date.issued
2016-12  
dc.identifier.citation
Gonçalves, Bruna Amin; Carpi, Laura; Rosso, Osvaldo Aníbal; Ravetti, Martín G.; Time series characterization via horizontal visibility graph and Information Theory; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 464; 12-2016; 93-102  
dc.identifier.issn
0378-4371  
dc.identifier.uri
http://hdl.handle.net/11336/46546  
dc.description.abstract
Complex networks theory have gained wider applicability since methods for transformation of time series to networks were proposed and successfully tested. In the last few years, horizontal visibility graph has become a popular method due to its simplicity and good results when applied to natural and artificially generated data. In this work, we explore different ways of extracting information from the network constructed from the horizontal visibility graph and evaluated by Information Theory quantifiers. Most works use the degreedistribution of the network, however, we found alternative probability distributions, more efficient than the degree distribution in characterizing dynamical systems. In particular, we find that, when using distributions based on distances and amplitude values, significant shorter time series are required. We analyze fractional Brownian motion time series, and a paleoclimatic proxy record of ENSO from the Pallcacocha Lake to study dynamical changes during the Holocene.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
Time Series Analysis  
dc.subject
Complex Networks  
dc.subject
Information Theory Quantifiers  
dc.subject.classification
Astronomía  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Time series characterization via horizontal visibility graph and Information Theory  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-05-29T18:36:49Z  
dc.journal.volume
464  
dc.journal.pagination
93-102  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Gonçalves, Bruna Amin. Universidade Federal de Minas Gerais; Brasil  
dc.description.fil
Fil: Carpi, Laura. Universidad Politécnica de Catalunya; España  
dc.description.fil
Fil: Rosso, Osvaldo Aníbal. Universidade Federal de Alagoas; Brasil. Instituto Tecnológico de Buenos Aires; Argentina. Universidad de los Andes; Chile. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Ravetti, Martín G.. Universidade Federal de Minas Gerais; Brasil  
dc.journal.title
Physica A: Statistical Mechanics and its Applications  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1016/j.physa.2016.07.063  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0378437116304940