Mostrar el registro sencillo del ítem

dc.contributor.author
Mazzitello, Karina Irma  
dc.contributor.author
Candia, Julián Marcelo  
dc.contributor.author
Albano, Ezequiel Vicente  
dc.date.available
2018-05-29T17:37:01Z  
dc.date.issued
2015-04  
dc.identifier.citation
Mazzitello, Karina Irma; Candia, Julián Marcelo; Albano, Ezequiel Vicente; Far-from-equilibrium growth of magnetic thin films with Blume-Capel impurities; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 91; 4; 4-2015; 1-9  
dc.identifier.issn
1539-3755  
dc.identifier.uri
http://hdl.handle.net/11336/46444  
dc.description.abstract
We investigate the irreversible growth of (2 + 1)-dimensional magnetic thin films. The spin variable can adopt three states (s_i = ±1,0), and the system is in contact with a thermal bath of temperature T . The deposition process depends on the change of the configuration energy, which, by analogy to the Blume-Capel Hamiltonianin equilibrium systems, depends on Ising-like couplings between neighboring spins (J ) and has a crystal field (D) term that controls the density of nonmagnetic impurities (s_i = 0). Once deposited, particles are not allowed to flip, diffuse, or detach. By means of extensive Monte Carlo simulations, we obtain the phase diagram in the crystal field vs temperature parameter space. We show clear evidence of the existence of a tricritical point located at D_t /J = 1.145(10) and k_B T_t /J = 0.425(10), which separates a first-order transition curve at lower temperatures from a critical second-order transition curve at higher temperatures, in analogy with the previously studied equilibrium Blume-Capel model. Furthermore, we show that, along the second-order transition curve, the critical behavior of the irreversible growth model can be described by means of the critical exponents of the two-dimensional Ising model under equilibrium conditions. Therefore, our findings provide a link between well-known theoretical equilibrium models and nonequilibrium growth processes that are of great interest for many experimental applications, as well as a paradigmatic topic of study in current statistical physics.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Physical Society  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Magnetic Thin Films  
dc.subject
Phase Transitions  
dc.subject
Critical Exponents  
dc.subject.classification
Astronomía  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Far-from-equilibrium growth of magnetic thin films with Blume-Capel impurities  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-05-21T16:54:55Z  
dc.journal.volume
91  
dc.journal.number
4  
dc.journal.pagination
1-9  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Mazzitello, Karina Irma. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Candia, Julián Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de La Plata; Argentina. University of Maryland; Estados Unidos  
dc.description.fil
Fil: Albano, Ezequiel Vicente. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina  
dc.journal.title
Physical Review E: Statistical, Nonlinear and Soft Matter Physics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1103/PhysRevE.91.042118  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.91.042118