Mostrar el registro sencillo del ítem
dc.contributor.author
Azcarate, Silvana Mariela
dc.contributor.author
de Araújo Gomes, Adriano
dc.contributor.author
Alcaraz, Mirta Raquel
dc.contributor.author
Ugulino de Araújo, Mário C.
dc.contributor.author
Camiña, José Manuel
dc.contributor.author
Goicoechea, Hector Casimiro
dc.date.available
2018-05-28T19:47:02Z
dc.date.issued
2015-10
dc.identifier.citation
Azcarate, Silvana Mariela; de Araújo Gomes, Adriano; Alcaraz, Mirta Raquel; Ugulino de Araújo, Mário C.; Camiña, José Manuel; et al.; Modeling excitation–emission fluorescence matrices with pattern recognition algorithms for classification of Argentine white wines according grape variety; Elsevier; Food Chemistry; 184; 10-2015; 214-219
dc.identifier.issn
0308-8146
dc.identifier.uri
http://hdl.handle.net/11336/46313
dc.description.abstract
This paper reports the modeling of excitation-emission matrices for classification of Argentinean white wines according to the grape variety employing chemometric tools for pattern recognition. The discriminative power of the data was first investigated using Principal Component Analysis (PCA) and Parallel Factor Analysis (PARAFAC). The score plots showed strong overlapping between classes. A forty-one samples set was partitioned into training and test sets by the Kennard-Stone algorithm. The algorithms evaluated were SIMCA, N- and U-PLS-DA and SPA-LDA. The fit of the implemented models was assessed by mean of accuracy, sensitivity and specificity. These models were then used to assign the type of grape of the wines corresponding to the twenty samples test set. The best results were obtained for U-PLS-DA and SPA-LDA with 76% and 80% accuracy.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
White Wine
dc.subject
Excitation-Emission Matrices
dc.subject
Simca
dc.subject
U-Pls-Da
dc.subject
N-Pls-Da
dc.subject
Spa-Lda
dc.subject.classification
Otras Ciencias Químicas
dc.subject.classification
Ciencias Químicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Modeling excitation–emission fluorescence matrices with pattern recognition algorithms for classification of Argentine white wines according grape variety
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-04-17T13:57:18Z
dc.journal.volume
184
dc.journal.pagination
214-219
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Azcarate, Silvana Mariela. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; Argentina
dc.description.fil
Fil: de Araújo Gomes, Adriano. Universidade Federal da Paraíba; Brasil
dc.description.fil
Fil: Alcaraz, Mirta Raquel. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina
dc.description.fil
Fil: Ugulino de Araújo, Mário C.. Universidade Federal da Paraíba; Brasil
dc.description.fil
Fil: Camiña, José Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias de la Tierra y Ambientales de La Pampa. Universidad Nacional de La Pampa. Facultad de Ciencias Exactas y Naturales. Instituto de Ciencias de la Tierra y Ambientales de La Pampa; Argentina
dc.description.fil
Fil: Goicoechea, Hector Casimiro. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina
dc.journal.title
Food Chemistry
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.foodchem.2015.03.081
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0308814615004537
Archivos asociados