Mostrar el registro sencillo del ítem

dc.contributor.author
Zhao, Qibin  
dc.contributor.author
Caiafa, Cesar Federico  
dc.contributor.author
Mandic, Danilo P.  
dc.contributor.author
Chao, Zenas C.  
dc.contributor.author
Nagasaka, Yasuo  
dc.contributor.author
Fujii, Naotaka  
dc.contributor.author
Zhang, Liqing  
dc.contributor.author
Cichocki, Andrzej  
dc.date.available
2016-03-04T19:14:21Z  
dc.date.issued
2013-07  
dc.identifier.citation
Zhao, Qibin ; Caiafa, Cesar Federico; Mandic, Danilo P. ; Chao, Zenas C. ; Nagasaka, Yasuo ; et al.; Higher-Order Partial Least Squares (HOPLS) : a generalized multi-linear regression method; IEEE Computer Society; IEEE Transactions on Pattern Analysis and Machine Intelligence; 35; 7; 7-2013; 1660-1673  
dc.identifier.issn
0162-8828  
dc.identifier.uri
http://hdl.handle.net/11336/4630  
dc.description.abstract
A new generalized multilinear regression model, termed the Higher-Order Partial Least Squares (HOPLS), is introduced with the aim to predict a tensor (multiway array) Y from a tensor X through projecting the data onto the latent space and performing regression on the corresponding latent variables. HOPLS differs substantially from other regression models in that it explains the data by a sum of orthogonal Tucker tensors, while the number of orthogonal loadings serves as a parameter to control model complexity and prevent overfitting. The low dimensional latent space is optimized sequentially via a deflation operation, yielding the best joint subspace approximation for both X and Y. Instead of decomposing X and Y individually, higher order singular value decomposition on a newly defined generalized cross-covariance tensor is employed to optimize the orthogonal loadings. A systematic comparison on both synthetic data and real-world decoding of 3D movement trajectories from electrocorticogram (ECoG) signals demonstrate the advantages of HOPLS over the existing methods in terms of better predictive ability, suitability to handle small sample sizes, and robustness to noise.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
IEEE Computer Society  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Multilinear Regression  
dc.subject
Partial Least Squares  
dc.subject
Higher-Order Singular Value Decompostion  
dc.subject
Constrained Block Tucker Decomposition  
dc.subject.classification
Ingeniería Eléctrica y Electrónica  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Higher-Order Partial Least Squares (HOPLS) : a generalized multi-linear regression method  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2016-03-30 10:35:44.97925-03  
dc.journal.volume
35  
dc.journal.number
7  
dc.journal.pagination
1660-1673  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Los Alamitos  
dc.conicet.avisoEditorial
This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible  
dc.description.fil
Fil: Zhao, Qibin . RIKEN Brain Science Institute; Japón  
dc.description.fil
Fil: Caiafa, Cesar Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Instituto Argentino de Radioastronomia (i); Argentina  
dc.description.fil
Fil: Mandic, Danilo P. . Imperial College Of Science And Technology; Reino Unido  
dc.description.fil
Fil: Chao, Zenas C. . RIKEN Brain Science Institute; Japón  
dc.description.fil
Fil: Nagasaka, Yasuo . RIKEN Brain Science Institute; Japón  
dc.description.fil
Fil: Fujii, Naotaka. RIKEN Brain Science Institute; Japón  
dc.description.fil
Fil: Zhang, Liqing. Shanghai Jiao Tong University; China  
dc.description.fil
Fil: Cichocki, Andrzej. RIKEN Brain Science Institute; Japón  
dc.journal.title
IEEE Transactions on Pattern Analysis and Machine Intelligence  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1109/TPAMI.2012.254  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/arxiv/http://arxiv.org/abs/1207.1230  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.computer.org/csdl/trans/tp/2013/07/ttp2013071660-abs.html