Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Using remotely sensed data to model suitable habitats for tree species in a desert environment

Campos, Valeria EvelinIcon ; Cappa, Flavio MartínIcon ; Fernandez Maldonado, Viviana NoemiIcon ; Giannoni, Stella MarisIcon
Fecha de publicación: 01/2016
Editorial: Wiley Blackwell Publishing, Inc
Revista: Journal of Vegetation Science
ISSN: 1100-9233
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias Biológicas

Resumen

Questions: Can the species ? environment relationship be understood using cur-rent remote sensing techniques? Can the derived indicators of remotely senseddata serve as a proxy for variables that affect habitat suitability of plant species?Which remote sensing predictors are best associated with woody species occur-rence in a desert environment? How well do models with derived indicators ofremotely sensed data predict the occurrence of these species? What are thepotential distributions of Ramorinoa girolae, Prosopis spp. and Bulnesia retama inthe study area?Location: Ischigualasto Provincial Park, San Juan province, Argentina.Methods: We selected random field points from a Landsat 8 OLI to determinepresence/absence of trees species. We calculated Brightness index (BI) using thesame image and used this index to calculate texture measures on a 3 9 3 mov-ing window size. We used the following subset of texture measures: (1) first-order: range, (2) second-order: mean, variance, contrast, entropy, secondmoment and correlation. We also calculated Topographic Wetness Index (TWI),slope angle and slope aspect from Global Digital Elevation Model.Results and Conclusion: Second-order mean of BI had an important effect onthe occurrence of target trees species. TWI was an important variable for Prosopisspp. and B. retama, whereas slope angle was important for R. girolae and B. re-tama. In addition, the occurrence of R. girolae was affected by second-order vari-ance of BI and slope aspect; and the presence of B. retama was affected bysecond-order contrast of BI. All the variables that had important effects on theoccurrence of tree species provide environmental information about their differ-ent habitat requirements; therefore, our findings indicate that the remote sens-ing data are reliable to derive indicators of tree species presence in our studyarea.
Palabras clave: Brightness Index , Conservation , Desert Environment , Global Digital Elevation Model , Habitat Generalist , Habitat Specialist , Plant Habitat Suitability , Remote Sensing Data , Texture Measures , Woodlands
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.350Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/46260
DOI: https://dx.doi.org/10.1111/jvs.12328
URL: https://onlinelibrary.wiley.com/doi/abs/10.1111/jvs.12328
Colecciones
Articulos(CCT - SAN JUAN)
Articulos de CENTRO CIENTIFICO TECNOLOGICO CONICET - SAN JUAN
Articulos(CIGEOBIO)
Articulos de CENTRO DE INVESTIGACIONES DE LA GEOSFERA Y BIOSFERA
Citación
Campos, Valeria Evelin; Cappa, Flavio Martín; Fernandez Maldonado, Viviana Noemi; Giannoni, Stella Maris; Using remotely sensed data to model suitable habitats for tree species in a desert environment; Wiley Blackwell Publishing, Inc; Journal of Vegetation Science; 27; 1; 1-2016; 200-210
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES