Mostrar el registro sencillo del ítem

dc.contributor.author
Mietta, José Luis  
dc.contributor.author
Tamborenea, Pablo Ignacio  
dc.contributor.author
Negri, Ricardo Martin  
dc.date.available
2018-05-24T18:58:55Z  
dc.date.issued
2016-01  
dc.identifier.citation
Mietta, José Luis; Tamborenea, Pablo Ignacio; Negri, Ricardo Martin; Anisotropic reversible piezoresistivity in magneticmetallic/polymer structured elastomer composites: modelling and experiments; Royal Society of Chemistry; Soft Matter; 12; 2; 1-2016; 422-431  
dc.identifier.issn
1744-683X  
dc.identifier.uri
http://hdl.handle.net/11336/46123  
dc.description.abstract
Structured elastomeric composites (SECs) with electrically conductive fillers display anisotropic piezoresistivity. The fillers do not form string-of-particle structures but pseudo-chains formed by grouping micro-sized clusters containing nanomagnetic particles surrounded by noble metals (e.g. silver, Ag). The pseudo-chains are formed when curing or preparing the composite in the presence of a uniform magnetic field, thus pseudo-chains are aligned in the direction of the field. The electrical conduction through pseudo-chains is analyzed and a constitutive model for the anisotropic reversible piezoresistivity in SECs is proposed. Several effects and characteristics, such as electron tunnelling, conduction inside the pseudo-chains, and chain-contact resistivity, are included in the model. Experimental results of electrical resistance, R, as a function of the normal stress applied in the direction of the pseudo-chains, P, are very well fitted by the model in the case of Fe3O4[Ag] microparticles magnetically aligned while curing in polydimethylsiloxane, PDMS. The cross sensitivity of different parameters (like the potential barrier and the effective distance for electron tunnelling) is evaluated. The model predicts the presence of several gaps for electron tunnelling inside the pseudo-chains. Estimates of those parameters for the mentioned experimental system under strains up to 20% are presented. Simulations of the expected response for other systems are performed showing the influence of Young's modulus and other parameters on the predicted piezoresistivity.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Royal Society of Chemistry  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Elastomeric Composites  
dc.subject
Piezoresistivity  
dc.subject.classification
Astronomía  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Anisotropic reversible piezoresistivity in magneticmetallic/polymer structured elastomer composites: modelling and experiments  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-05-04T21:31:09Z  
dc.journal.volume
12  
dc.journal.number
2  
dc.journal.pagination
422-431  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Cambridge  
dc.description.fil
Fil: Mietta, José Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina  
dc.description.fil
Fil: Tamborenea, Pablo Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina  
dc.description.fil
Fil: Negri, Ricardo Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina  
dc.journal.title
Soft Matter  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1039/C5SM02268A  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://pubs.rsc.org/en/Content/ArticleLanding/2016/SM/C5SM02268A#!divAbstract