Mostrar el registro sencillo del ítem

dc.contributor.author
Doughty, Christopher E.  
dc.contributor.author
Santos-Andrade, P. E.  
dc.contributor.author
Goldsmith, G. R.  
dc.contributor.author
Blonder, B.  
dc.contributor.author
Shenkin, A.  
dc.contributor.author
Bentley. L. P.  
dc.contributor.author
Chavana-Bryant, C.  
dc.contributor.author
Huaraca-Huasco, W.  
dc.contributor.author
Díaz, Sandra Myrna  
dc.contributor.author
Salinas, N.  
dc.contributor.author
Enquist, B. J.  
dc.contributor.author
Martin, R.  
dc.contributor.author
Asner, G. P.  
dc.contributor.author
Malh, Y.  
dc.date.available
2018-05-23T14:48:48Z  
dc.date.issued
2017-11  
dc.identifier.citation
Doughty, Christopher E.; Santos-Andrade, P. E.; Goldsmith, G. R.; Blonder, B.; Shenkin, A.; et al.; Can leaf spectroscopy predict leaf and forest traits along a peruvian tropical forest elevation gradient?; Agu Publications; Journal of Geophysical Research; 122; 11; 11-2017; 2952-2965  
dc.identifier.issn
2169-8953  
dc.identifier.uri
http://hdl.handle.net/11336/45989  
dc.description.abstract
High‐resolution spectroscopy can be used to measure leaf chemical and structural traits. Such leaf traits are often highly correlated to other traits, such as photosynthesis, through the leaf economics spectrum. We measured VNIR (visible‐near infrared) leaf reflectance (400–1,075 nm) of sunlit and shaded leaves in ~150 dominant species across ten, 1 ha plots along a 3,300 m elevation gradient in Peru (on 4,284 individual leaves). We used partial least squares (PLS) regression to compare leaf reflectance to chemical traits, such as nitrogen and phosphorus, structural traits, including leaf mass per area (LMA), branch wood density and leaf venation, and “higher‐level” traits such as leaf photosynthetic capacity, leaf water repellency, and woody growth rates. Empirical models using leaf reflectance predicted leaf N and LMA (r2 > 30% and %RMSE < 30%), weakly predicted leaf venation, photosynthesis, and branch density (r2 between 10 and 35% and %RMSE between 10% and 65%), and did not predict leaf water repellency or woody growth rates (r2<5%). Prediction of higher‐level traits such as photosynthesis and branch density is likely due to these traits correlations with LMA, a trait readily predicted with leaf spectroscopy.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Agu Publications  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Leaf Reflectance  
dc.subject
Leaf Properties  
dc.subject
High-Resolution Spectroscopy  
dc.subject.classification
Otras Ciencias Biológicas  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Can leaf spectroscopy predict leaf and forest traits along a peruvian tropical forest elevation gradient?  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-05-22T21:46:24Z  
dc.identifier.eissn
2169-8961  
dc.journal.volume
122  
dc.journal.number
11  
dc.journal.pagination
2952-2965  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Doughty, Christopher E.. University of Arizona; Estados Unidos  
dc.description.fil
Fil: Santos-Andrade, P. E.. Universidad San Antonio Abad, Cusco; Perú  
dc.description.fil
Fil: Goldsmith, G. R.. Paul Scherrer Institute, Villigen, Switzerland; Suiza  
dc.description.fil
Fil: Blonder, B.. University of Oxford; Reino Unido  
dc.description.fil
Fil: Shenkin, A.. University of Oxford; Reino Unido  
dc.description.fil
Fil: Bentley. L. P.. Sonoma State University; Estados Unidos. University of Oxford; Reino Unido  
dc.description.fil
Fil: Chavana-Bryant, C.. University of Oxford; Reino Unido  
dc.description.fil
Fil: Huaraca-Huasco, W.. University of Oxford; Reino Unido. Universidad San Antonio Abad, Cusco; Perú  
dc.description.fil
Fil: Díaz, Sandra Myrna. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentina  
dc.description.fil
Fil: Salinas, N.. Universidad San Antonio Abad, Cusco; Perú. Pontificia Universidad Católica de Perú; Perú  
dc.description.fil
Fil: Enquist, B. J.. Arizona State University; Estados Unidos. Santa Fe Institute; Estados Unidos  
dc.description.fil
Fil: Martin, R.. Carnegie Institution for Science; Estados Unidos  
dc.description.fil
Fil: Asner, G. P.. Carnegie Institution for Science; Estados Unidos  
dc.description.fil
Fil: Malh, Y.. University of Oxford; Reino Unido  
dc.journal.title
Journal of Geophysical Research  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://bit.ly/2Lo5i5n  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1002/2017JG003883