Artículo
Frontal operators in distributive lattices with a generalized implication
Fecha de publicación:
09/2015
Editorial:
WorldScientific Open Access
Revista:
Asian-European Journal of Mathematics
ISSN:
1793-7183
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We introduce a family of extensions of bounded distributive lattices. These extensions are obtained by adding two operations: an internal unary operation, and a function (called generalized implication) that maps pair of elements to ideals of the lattice. A bounded distributive lattice with a generalized implication is called gi-lattice in [4]. The main goal of this paper is to introduce and study the category of frontal gi-lattices (and some subcategories of it). This category can be seen as a generalization of the category of frontal weak Heyting algebras ([9]). In particular, we study the case of frontal gi-lattices where the generalized implication is defined as the annihilator ([11], [15]). We give a Priestley’s style duality for each one of the new classes of structures considered.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - LA PLATA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - LA PLATA
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - LA PLATA
Citación
Celani, Sergio Arturo; San Martín, Hernán Javier; Frontal operators in distributive lattices with a generalized implication; WorldScientific Open Access; Asian-European Journal of Mathematics; 8; 3; 9-2015; 1-22
Compartir
Altmétricas