Mostrar el registro sencillo del ítem

dc.contributor.author
García Molleja, J.  
dc.contributor.author
Milanese, Maria Magdalena  
dc.contributor.author
Piccoli, M.  
dc.contributor.author
Moroso, Roberto Luis  
dc.contributor.author
Niedbalski, Jorge Julio  
dc.contributor.author
Nosei, L.  
dc.contributor.author
Burgi, Juan Mauel  
dc.contributor.author
Benporad, E.  
dc.contributor.author
Feugeas, Jorge Nestor  
dc.date.available
2016-03-02T17:50:15Z  
dc.date.issued
2013-02  
dc.identifier.citation
García Molleja, J.; Milanese, Maria Magdalena; Piccoli, M.; Moroso, Roberto Luis; Niedbalski, Jorge Julio; et al.; Stability of expanded austenite, generated by ion carburizing and ion nitriding of AISI 316L SS, under high temperature and high energy pulsed ion beam irradiation; Elsevier; Surface and Coatings Technology; 218; 2-2013; 142-151  
dc.identifier.issn
0257-8972  
dc.identifier.uri
http://hdl.handle.net/11336/4578  
dc.description.abstract
Expanded austenite can be generated on austenitic stainless steels either by ion carburizing or ion nitriding. In both cases the resulting fcc crystal structure, supersaturated with nitrogen or carbon, is strongly hardened with improved wear-resistance, while maintaining the original resistance to corrosion. In this work, we have studied the stability of expanded austenite, generated by ion nitriding and ion carburizing on AISI 316L SS with N and C, under: a—high temperature (225 °C – 504 °C), and b—under irradiation with high energy (30 keV – 500 keV), high fluence (~ 1015 cm− 2), short duration (~ 400 ns) light (deuterium and helium) ion beams. It was found that expanded austenite is stable below 325 °C. Between 325 °C and 504 °C expanded austenite lattice parameter presents gradual reduction with increasing temperature. We observed microstructural changes related only to the temperature treatment. We did not observe any microstructure change due to the duration of the heat treatment. Over 504 °C, the lattice parameter returns to the material's austenite original parameter. On the other hand, when irradiated with pulsed ion beams, a gradual reduction of the lattice parameter corresponding to the expanded austenite with the number of pulses was observed. This behavior can be explained through the thermal shock induced on the surface by each beam, consisting in fast heating followed by fast cooling that induces the gradual exo-diffusion of N (or C). Nevertheless, after 20 ion pulses, a final lattice parameter slightly higher than the corresponding to the original austenite was found as stable limit. This residual expansion can be attributed to partial amorphization of the first few micrometers that induces stresses on the crystals of austenite which are closer to the surface layers.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
Ion Carburizing  
dc.subject
Expanded Austenite  
dc.subject
Plasma Focus  
dc.subject
Crystalline Stability  
dc.subject.classification
Física de los Materiales Condensados  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Stability of expanded austenite, generated by ion carburizing and ion nitriding of AISI 316L SS, under high temperature and high energy pulsed ion beam irradiation  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2016-03-30 10:35:44.97925-03  
dc.journal.volume
218  
dc.journal.pagination
142-151  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: García Molleja, J.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Física de Rosario (i); Argentina  
dc.description.fil
Fil: Milanese, Maria Magdalena. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Instituto de Fisica Arroyo Seco; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil; Argentina  
dc.description.fil
Fil: Piccoli, M.. Università Roma Tre. Dipartimento di Ingegneria Meccanica e Industriale; Italia  
dc.description.fil
Fil: Moroso, Roberto Luis. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Instituto de Fisica Arroyo Seco; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil; Argentina  
dc.description.fil
Fil: Niedbalski, Jorge Julio. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Instituto de Fisica Arroyo Seco; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil; Argentina  
dc.description.fil
Fil: Nosei, L.. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura. Instituto de Mecánica Aplicada y Estructuras; Argentina  
dc.description.fil
Fil: Burgi, Juan Mauel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Física de Rosario (i); Argentina  
dc.description.fil
Fil: Benporad, E.. Università Roma Tre. Dipartimento di Ingegneria Meccanica e Industriale; Italia  
dc.description.fil
Fil: Feugeas, Jorge Nestor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Física de Rosario (i); Argentina  
dc.journal.title
Surface and Coatings Technology  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0257897213000030  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.surfcoat.2012.12.043