Artículo
Analytic Representation of Bayes Labeling and Bayes Clustering Operators for Random Labeled Point Processes
Fecha de publicación:
03/2015
Editorial:
Institute of Electrical and Electronics Engineers
Revista:
IEEE Transactions On Signal Processing
ISSN:
1053-5888
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Clustering algorithms typically group points based on some similarity criterion, but without reference to an underlying random process to make clustering algorithms rigorously predictive. In fact, there exists a probabilistic theory of clustering in the context of random labeled point sets in which clustering error is defined in terms of the process. In the present paper, given an underlying point process we develop a general analytic procedure for finding an optimal clustering operator, the Bayes clusterer, that corresponds to the Bayes classifier in classification theory. We provide detailed solutions under Gaussian models. Owing to computational complexity we also develop approximations of the Bayes clusterer.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - MAR DEL PLATA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - MAR DEL PLATA
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - MAR DEL PLATA
Citación
Dalton, Lori A.; Benalcazar Palacios, Marco Enrique; Brun, Marcel; Dougherty, Edward R.; Analytic Representation of Bayes Labeling and Bayes Clustering Operators for Random Labeled Point Processes; Institute of Electrical and Electronics Engineers; IEEE Transactions On Signal Processing; 63; 6; 3-2015; 1605-1620
Compartir
Altmétricas