Mostrar el registro sencillo del ítem

dc.contributor.author
Simari, Gerardo  
dc.contributor.author
Shakarian, Paulo  
dc.contributor.author
Falappa, Marcelo Alejandro  
dc.date.available
2018-05-14T17:13:47Z  
dc.date.issued
2016-04-19  
dc.identifier.citation
Simari, Gerardo; Shakarian, Paulo; Falappa, Marcelo Alejandro; A quantitative approach to belief revision in structured probabilistic argumentation; Springer; Annals of Mathematics and Artificial Intelligence; 76; 3-4; 19-4-2016; 375-408  
dc.identifier.issn
1012-2443  
dc.identifier.uri
http://hdl.handle.net/11336/45083  
dc.description.abstract
Many real-world knowledge-based systems must deal with information coming from different sources that invariably leads to incompleteness, overspecification, or inherently uncertain content. The presence of these varying levels of uncertainty doesn’t mean that the information is worthless – rather, these are hurdles that the knowledge engineer must learn to work with. In this paper, we continue work on an argumentation-based framework that extends the well-known Defeasible Logic Programming (DeLP) language with probabilistic uncertainty, giving rise to the Defeasible Logic Programming with Presumptions and Probabilistic Environments (DeLP3E) model. Our prior work focused on the problem of belief revision in DeLP3E, where we proposed a non-prioritized class of revision operators called AFO (Annotation Function-based Operators) to solve this problem. In this paper, we further study this class and argue that in some cases it may be desirable to define revision operators that take quantitative aspects into account, such as how the probabilities of certain literals or formulas of interest change after the revision takes place. To the best of our knowledge, this problem has not been addressed in the argumentation literature to date. We propose the QAFO (Quantitative Annotation Function-based Operators) class of operators, a subclass of AFO, and then go on to study the complexity of several problems related to their specification and application in revising knowledge bases. Finally, we present an algorithm for computing the probability that a literal is warranted in a DeLP3E knowledge base, and discuss how it could be applied towards implementing QAFO-style operators that compute approximations rather than exact operations.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Structured Argumentation  
dc.subject
Belief Revision  
dc.subject
Reasoning Under Probabilistic Uncertainty  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
A quantitative approach to belief revision in structured probabilistic argumentation  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-05-04T21:09:24Z  
dc.identifier.eissn
1573-7470  
dc.journal.volume
76  
dc.journal.number
3-4  
dc.journal.pagination
375-408  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlín  
dc.description.fil
Fil: Simari, Gerardo. Universidad Nacional del Sur. Departamento de Ciencia e Ingeniería de la Computación. Laboratorio de Investigación y Desarrollo en Inteligencia Artificial; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina  
dc.description.fil
Fil: Shakarian, Paulo. Arizona State University; Estados Unidos  
dc.description.fil
Fil: Falappa, Marcelo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina. Universidad Nacional del Sur. Departamento de Ciencia e Ingeniería de la Computación. Laboratorio de Investigación y Desarrollo en Inteligencia Artificial; Argentina  
dc.journal.title
Annals of Mathematics and Artificial Intelligence  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007/s10472-015-9476-4  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s10472-015-9476-4