Mostrar el registro sencillo del ítem

dc.contributor.author
Rorai, Cecilia  
dc.contributor.author
Mininni, Pablo Daniel  
dc.contributor.author
Lemperiere, Annick  
dc.date.available
2018-05-10T22:02:01Z  
dc.date.issued
2015-07  
dc.identifier.citation
Rorai, Cecilia; Mininni, Pablo Daniel; Lemperiere, Annick; Stably stratified turbulence in the presence of large-scale forcing; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 92; 1; 7-2015; 1-12; 013003  
dc.identifier.issn
1539-3755  
dc.identifier.uri
http://hdl.handle.net/11336/44855  
dc.description.abstract
We perform two high-resolution direct numerical simulations of stratified turbulence for Reynolds number equal to Re ≈ 25 000 and Froude number, respectively, of Fr ≈ 0.1 and Fr ≈ 0.03. The flows are forced at large scale and discretized on an isotropic grid of 20483 points. Stratification makes the flow anisotropic and introduces two extra characteristic scales with respect to homogeneous isotropic turbulence: the buoyancy scale, LB, and the Ozmidov scale, oz. The former is related to the number of layers that the flow develops in the direction of gravity, and the latter is regarded as the scale at which isotropy is recovered. The values of LB and oz depend on the Froude number, and their absolute and relative amplitudes affect the repartition of energy among Fourier modes in ways that are not easy to predict. By contrasting the behavior of the two simulated flows we identify some surprising similarities: After an initial transient the two flows evolve towards comparable values of the kinetic and potential enstrophy and energy dissipation rate. This is the result of the Reynolds number being large enough in both flows for the Ozmidov scale to be resolved. When properly dimensionalized, the energy dissipation rate is compatible with atmospheric observations. Further similarities emerge at large scales: The same ratio between potential and total energy (≈0.1) is spontaneously selected by the flows, and slow modes grow monotonically in both regimes, causing a slow increase of the total energy in time. The axisymmetric total energy spectrum shows a wide variety of spectral slopes as a function of the angle between the imposed stratification and the wave vector. One-dimensional energy spectra computed in the direction parallel to gravity are flat from the forcing up to buoyancy scale. At intermediate scales a ∼k−3 parallel spectrum develops for the Fr ≈ 0.03 run, whereas for weaker stratification, the saturation spectrum does not have enough scales to develop and instead one observes a power law compatible with Kolmogorov scaling. Finally, the spectrum of helicity is flat until LB, as observed in the nocturnal planetary boundary layer.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Physical Society  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Stratified Flows  
dc.subject
Atmospheric Flows  
dc.subject
Gravity Waves  
dc.subject
Turbulence  
dc.subject.classification
Astronomía  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Stably stratified turbulence in the presence of large-scale forcing  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-05-04T21:30:19Z  
dc.journal.volume
92  
dc.journal.number
1  
dc.journal.pagination
1-12; 013003  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
New York  
dc.description.fil
Fil: Rorai, Cecilia. Nordita; Suecia  
dc.description.fil
Fil: Mininni, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina  
dc.description.fil
Fil: Lemperiere, Annick. National Center for Atmospheric Research; Estados Unidos. University of Colorado; Estados Unidos  
dc.journal.title
Physical Review E: Statistical, Nonlinear and Soft Matter Physics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://journals.aps.org/pre/abstract/10.1103/PhysRevE.92.013003  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1103/PhysRevE.92.013003