Mostrar el registro sencillo del ítem
dc.contributor.author
Morales, Jorge Luis
dc.contributor.author
Solovey, Guillermo
dc.contributor.author
Maniscalco, Brian
dc.contributor.author
Rahnev, Drobomir
dc.contributor.author
de Lange, Floris P.
dc.contributor.author
Lau, Hakwan
dc.date.available
2018-05-09T17:36:52Z
dc.date.issued
2015-08
dc.identifier.citation
Morales, Jorge Luis; Solovey, Guillermo; Maniscalco, Brian; Rahnev, Drobomir; de Lange, Floris P.; et al.; Low attention impairs optimal incorporation of prior knowledge in perceptual decisions; Psychonomic Society; Attention Perception & Psychophysics; 77; 6; 8-2015; 2021-2036
dc.identifier.issn
1943-3921
dc.identifier.uri
http://hdl.handle.net/11336/44631
dc.description.abstract
When visual attention is directed away from a stimulus, neural processing is weak and strength and precision of sensory data decreases. From a computational perspective, in such situations observers should give more weight to prior expectations in order to behave optimally during a discrimination task. Here we test a signal detection theoretic model that counter-intuitively predicts subjects will do just the opposite in a discrimination task with two stimuli, one attended and one unattended: when subjects are probed to discriminate the unattended stimulus, they rely less on prior information about the probed stimulus’ identity. The model is in part inspired by recent findings that attention reduces trial-by-trial variability of the neuronal population response and that they use a common criterion for attended and unattended trials. In five different visual discrimination experiments, when attention was directed away from the target stimulus, subjects did not adjust their response bias in reaction to a change in stimulus presentation frequency despite being fully informed and despite the presence of performance feedback and monetary and social incentives. This indicates that subjects did not rely more on the priors under conditions of inattention as would be predicted by a Bayes-optimal observer model. These results inform and constrain future models of Bayesian inference in the human brain.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Psychonomic Society
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
ATTENTION: DIVIDED ATTENTION AND INATTENTION
dc.subject
COGNITIVE AND ATTENTIONAL CONTROL
dc.subject
IDEAL OBSERVER BAYESIAN MODELS
dc.subject
SIGNAL DETECTION THEORY
dc.subject.classification
Otras Ciencias Biológicas
dc.subject.classification
Ciencias Biológicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Low attention impairs optimal incorporation of prior knowledge in perceptual decisions
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-04-16T14:56:07Z
dc.identifier.eissn
1943-393X
dc.journal.volume
77
dc.journal.number
6
dc.journal.pagination
2021-2036
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Austin
dc.description.fil
Fil: Morales, Jorge Luis. Columbia University; Estados Unidos
dc.description.fil
Fil: Solovey, Guillermo. Columbia University; Estados Unidos. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física. Laboratorio de Neurociencia Integrativa; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Maniscalco, Brian. Columbia University; Estados Unidos. National Institutes of Health; Estados Unidos
dc.description.fil
Fil: Rahnev, Drobomir. Columbia University; Estados Unidos. University of California; Estados Unidos
dc.description.fil
Fil: de Lange, Floris P.. Radboud Universiteit Nijmegen. Donders Instituto Brain Cognition And Behavior. Snn Machine Learning Group; Países Bajos
dc.description.fil
Fil: Lau, Hakwan. Columbia University; Estados Unidos. Radboud Universiteit Nijmegen. Donders Instituto Brain Cognition And Behavior. Snn Machine Learning Group; Países Bajos. University of California; Estados Unidos
dc.journal.title
Attention Perception & Psychophysics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3758/s13414-015-0897-2
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.3758%2Fs13414-015-0897-2
Archivos asociados