Artículo
Selective liquid-phase hydrogenation of fructose to D-mannitol over copper-supported metallic nanoparticles
Zelin, Juan
; Meyer, Camilo Ignacio
; Regenhardt, Silvina Andrea
; Sebastian, V.; Garetto, Teresita Francisca
; Marchi, Alberto Julio
Fecha de publicación:
07/2017
Editorial:
Elsevier Science Sa
Revista:
Chemical Engineering Journal
ISSN:
1385-8947
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The selective liquid-phase hydrogenation of d-fructose was studied on Cu-based catalyst, using an ethanol-water (70:30) mixture as solvent. The catalysts were prepared by three different methods: incipient wetness impregnation (Cu/SiO2-I and Cu/Al2O3-I), precipitation–deposition (Cu/SiO2-PD) and co-precipitation (CuMgAl and CuZnAl). After the thermal treatment, the samples were characterized by X-ray diffraction (XRD) and temperature-programmed reduction (TPR). Only a tenorite-like polycrystalline phase, formed by large CuO crystallites, was identified in Cu/SiO2-I, while none crystalline phase was observed in the case of Cu/SiO2-PD. Instead, a unique spinel-like phase was detected with Cu/Al2O3-I, CuMgAl and CuZnAl. Combining XRD and TPR results, we concluded that Cu2+ is highly dispersed in the Cu/SiO2-PD, Cu/Al2O3-I, CuMgAl and CuZnAl calcined precursors. As a consequence, after reduction in H2 flow, the metal dispersion and hydrogen chemisorption capacity of these four samples were one order higher than for Cu/SiO2-I. The catalytic tests showed that Cu/SiO2-PD was not only the most active but also the most selective and stable catalyst of these series: a D-fructose conversion of around 100% was reached after 6 h reaction, with a selectivity to d-mannitol of around 78–80%. These results show that selective hydrogenation of fructose to d-mannitol is favoured over metal Cu nanoparticles dispersed on the surface of a neutral support as SiO2. Additional catalytic tests, varying fructose initial concentration (0.028–0.220 M) and hydrogen pressure (20–40 bar), were carried out with Cu/SiO2-PD. A zero reaction order respect to D-fructose and a second reaction order respect to H2 were estimated. In addition, it was found that d-mannitol selectivity is not dependent on reactant initial concentration and hydrogen pressure.
Palabras clave:
Cu-Based Catalyst
,
D-Fructose
,
D-Mannitol
,
Liquid-Phase Hydrogenation
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(INCAPE)
Articulos de INST.DE INVEST.EN CATALISIS Y PETROQUIMICA "ING. JOSE MIGUEL PARERA"
Articulos de INST.DE INVEST.EN CATALISIS Y PETROQUIMICA "ING. JOSE MIGUEL PARERA"
Citación
Zelin, Juan; Meyer, Camilo Ignacio; Regenhardt, Silvina Andrea; Sebastian, V.; Garetto, Teresita Francisca; et al.; Selective liquid-phase hydrogenation of fructose to D-mannitol over copper-supported metallic nanoparticles; Elsevier Science Sa; Chemical Engineering Journal; 319; 7-2017; 48-56
Compartir
Altmétricas