Mostrar el registro sencillo del ítem

dc.contributor.author
Dillon, María Eugenia  
dc.contributor.author
Garcia Skabar, Yanina  
dc.contributor.author
Ruiz, Juan Jose  
dc.contributor.author
Kalnay, Eugenia  
dc.contributor.author
Collini, Estela Angela  
dc.contributor.author
Echevarria, Pablo  
dc.contributor.author
Saucedo, Marcos Adolfo  
dc.contributor.author
Miyoshi, Takemasa  
dc.contributor.author
Kunii, Masaru  
dc.date.available
2018-05-07T20:59:54Z  
dc.date.issued
2016-02  
dc.identifier.citation
Dillon, María Eugenia; Garcia Skabar, Yanina; Ruiz, Juan Jose; Kalnay, Eugenia; Collini, Estela Angela; et al.; Application of the WRF-LETKF Data Assimilation System over Southern South America: Sensitivity to Model Physics; American Meteorological Society; Weather and Forecasting; 31; 1; 2-2016; 217-236  
dc.identifier.issn
0882-8156  
dc.identifier.uri
http://hdl.handle.net/11336/44370  
dc.description.abstract
Improving the initial conditions of short-range numerical weather prediction (NWP) models is one of the main goals of the meteorological community. Development of data assimilation and ensemble forecast systems is essential in any national weather service (NWS). In this sense, the local ensemble transform Kalman filter (LETKF) is a methodology that can satisfy both requirements in an efficient manner. The Weather Research and Forecasting (WRF) Model coupled with the LETKF, developed at the University of Maryland, College Park, have been implemented experimentally at the NWS of Argentina [Servicio Meteorológico Nacional (SMN)], but at a somewhat lower resolution (40 km) than the operational Global Forecast System (GFS) at that time (27 km). The purpose of this work is not to show that the system presented herein is better than the higher-resolution GFS, but that its performance is reasonably comparable, and to provide the basis for a continued improved development of an independent regional data assimilation and forecasting system. The WRF-LETKF system is tested during the spring of 2012, using the prepared or quality controlled data in Binary Universal Form for Representation of Meteorological Data (PREPBUFR) observations from the National Centers for Environmental Prediction (NCEP) and lateral boundary conditions from the GFS. To assess the effect of model error, a single-model LETKF system (LETKF-single) is compared with a multischeme implementation (LETKF-multi), which uses different boundary layer and cumulus convection schemes for the generation of the ensemble of forecasts. The performance of both experiments during the test period shows that the LETKF-multi usually outperforms the LETKF-single, evidencing the advantages of the use of the multischeme approach. Both data assimilation systems are slightly worse than the GFS in terms of the synoptic environment representation, as could be expected given their lower resolution. Results from a case study of a strong convective system suggest that the LETKF-multi improves the location of the most intense area of precipitation with respect to the LETKF-single, although both systems show an underestimation of the total accumulated precipitation. These preliminary results encourage continuing the development of an operational data assimilation system based on WRF-LETKF at the SMN.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Meteorological Society  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Mathematical And Statistical Techniques  
dc.subject
Kalman Filters  
dc.subject
Forecasting  
dc.subject
Numerical Weather Prediction/Forecasting  
dc.subject.classification
Meteorología y Ciencias Atmosféricas  
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Application of the WRF-LETKF Data Assimilation System over Southern South America: Sensitivity to Model Physics  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-04-27T14:00:54Z  
dc.journal.volume
31  
dc.journal.number
1  
dc.journal.pagination
217-236  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Boston  
dc.description.fil
Fil: Dillon, María Eugenia. Ministerio de Defensa. Secretaria de Planeamiento. Servicio Meteorológico Nacional; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Garcia Skabar, Yanina. Ministerio de Defensa. Secretaria de Planeamiento. Servicio Meteorológico Nacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Ruiz, Juan Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina  
dc.description.fil
Fil: Kalnay, Eugenia. University of Maryland; Estados Unidos  
dc.description.fil
Fil: Collini, Estela Angela. Ministerio de Defensa. Armada Argentina. Servicio de Hidrografía Naval; Argentina. Ministerio de Defensa. Secretaria de Planeamiento. Servicio Meteorológico Nacional; Argentina  
dc.description.fil
Fil: Echevarria, Pablo. Ministerio de Defensa. Secretaria de Planeamiento. Servicio Meteorológico Nacional; Argentina  
dc.description.fil
Fil: Saucedo, Marcos Adolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina  
dc.description.fil
Fil: Miyoshi, Takemasa. RIKEN Advanced Institute for Computational Science; Japón  
dc.description.fil
Fil: Kunii, Masaru. RIKEN Advanced Institute for Computational Science; Japón  
dc.journal.title
Weather and Forecasting  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1175/WAF-D-14-00157.1  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://journals.ametsoc.org/doi/10.1175/WAF-D-14-00157.1