Mostrar el registro sencillo del ítem

dc.contributor.author
Cruz, Luis J.  
dc.contributor.author
Tacken, Paul J.  
dc.contributor.author
Zeelenberg, Ingrid S.  
dc.contributor.author
Srinivas, Mangala  
dc.contributor.author
Bonetto, Fernando Jose  
dc.contributor.author
Weigelin, Bettina  
dc.contributor.author
Eich, Christina  
dc.contributor.author
de Vries, I. Jolanda  
dc.contributor.author
Figdor, Carl G.  
dc.date.available
2016-02-25T18:00:27Z  
dc.date.issued
2014-10  
dc.identifier.citation
Cruz, Luis J.; Tacken, Paul J.; Zeelenberg, Ingrid S.; Srinivas, Mangala; Bonetto, Fernando Jose; et al.; Tracking Targeted Bimodal Nanovaccines: Immune Responses and Routing in Cells, Tissue, and Whole Organism; American Chemical Society; Molecular Pharmaceutics; 11; 12; 10-2014; 4299–4313  
dc.identifier.issn
1543-8384  
dc.identifier.uri
http://hdl.handle.net/11336/4433  
dc.description.abstract
Dendritic cells (DCs) are the most potent antigen-presenting cells (APCs), involved in the induction of immunity and currently exploited for antitumor immunotherapies. An optimized noninvasive imaging modality capable of determining and quantifying DC-targeted nanoparticle (NP) trajectories could provide valuable information regarding therapeutic vaccine outcome. Here, targeted poly(d,l-lactide-co-glycolide) nanoparticles (PLGA NPs) recognizing DC receptors were equipped with superparamagnetic iron oxide particles (SPIO) or gold nanoparticles with fluorescently labeled antigen. The fluorescent label allowed for rapid analysis and quantification of DC-specific uptake of targeted PLGA NPs in comparison to uptake by other cells. Transmission electron microscopy (TEM) showed that a fraction of the encapsulated antigen reached the lysosomal compartment of DCs, where SPIO and gold were already partially released. However, part of the PLGA NPs localized within the cytoplasm, as confirmed by confocal microscopy. DCs targeted with NPs carrying SPIO or fluorescent antigen were detected within lymph nodes as early as 1 h after injection by magnetic resonance imaging (MRI). Despite the fact that targeting did not markedly affect PLGA NP biodistribution on organism and tissue level, it increased delivery of NPs to DCs residing in peripheral lymph nodes and resulted in enhanced T cell proliferation. In conclusion, two imaging agents within a single carrier allows tracking of targeted PLGA NPs at the subcellular, cellular, and organismal levels, thereby facilitating the rational design of in vivo targeted vaccination strategies.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Chemical Society  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Imaging  
dc.subject
Nanocarriers  
dc.subject
Biocompatible And Biodegradable Polymers  
dc.subject
Nanomaterials  
dc.subject
Contrast Agents  
dc.subject
Fluorescence  
dc.subject
Magnetic Resonance Imaging  
dc.subject
Dendritic Cells  
dc.subject.classification
Biotecnología relacionada con la Salud  
dc.subject.classification
Biotecnología de la Salud  
dc.subject.classification
CIENCIAS MÉDICAS Y DE LA SALUD  
dc.title
Tracking Targeted Bimodal Nanovaccines: Immune Responses and Routing in Cells, Tissue, and Whole Organism  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2016-03-30 10:35:44.97925-03  
dc.journal.volume
11  
dc.journal.number
12  
dc.journal.pagination
4299–4313  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Washington  
dc.description.fil
Fil: Cruz, Luis J.. Radboud University Medical Center. Radboud Institute for Molecular Life Sciences. Department of Tumor Immunology; Países Bajos  
dc.description.fil
Fil: Tacken, Paul J.. Radboud University Medical Center. Radboud Institute for Molecular Life Sciences. Department of Tumor Immunology; Países Bajos  
dc.description.fil
Fil: Zeelenberg, Ingrid S.. Radboud University Medical Center. Radboud Institute for Molecular Life Sciences. Department of Tumor Immunology; Países Bajos  
dc.description.fil
Fil: Srinivas, Mangala. Radboud University Medical Center. Radboud Institute for Molecular Life Sciences. Department of Tumor Immunology; Países Bajos  
dc.description.fil
Fil: Bonetto, Fernando Jose. Radboud University Medical Center. Radboud Institute for Molecular Life Sciences. Department of Tumor Immunology; Países Bajos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Física del Litoral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química (i); Argentina  
dc.description.fil
Fil: Weigelin, Bettina. Radboud University Medical Center. Radboud Institute for Molecular Life Sciences. Department of Cell Biology; Países Bajos  
dc.description.fil
Fil: Eich, Christina. Radboud University Medical Center. Radboud Institute for Molecular Life Sciences. Department of Tumor Immunology; Países Bajos  
dc.description.fil
Fil: de Vries, I. Jolanda. Radboud University Medical Center. Radboud Institute for Molecular Life Sciences. Department of Tumor Immunology; Países Bajos  
dc.description.fil
Fil: Figdor, Carl G.. Radboud University Medical Center. Radboud Institute for Molecular Life Sciences. Department of Tumor Immunology; Países Bajos  
dc.journal.title
Molecular Pharmaceutics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/abs/10.1021/mp400717r  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/DOI:10.1021/mp400717r  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/issn/1543-8384