Artículo
Derivative expansion for the electromagnetic and Neumann-Casimir effects in 2+1 dimensions with imperfect mirrors
Fecha de publicación:
05/2015
Editorial:
American Physical Society
Revista:
Physical Review D
ISSN:
0556-2821
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We calculate the Casimir interaction energy in d = 2 spatial dimensions between two (zero-width) mirrors -one flat and the other slightly curved- upon which imperfect conductor boundary conditions are imposed for an electromagnetic (EM) field. Our main result is a second-order derivative expansion (DE) approximation for the Casimir energy, which is studied in different interesting limits. In particular, we focus on the emergence of a nonanalyticity beyond the leading-order term in the DE, when approaching the limit of perfectly conducting mirrors. We also show that the system considered is equivalent to a dual one, consisting of a massless real scalar field satisfying imperfect Neumann conditions (on the very same boundaries). Therefore, the results obtained for the EM field hold true also for the scalar field model.
Palabras clave:
Casimir Effects
,
Derivative Expansion
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IFIBA)
Articulos de INST.DE FISICA DE BUENOS AIRES
Articulos de INST.DE FISICA DE BUENOS AIRES
Citación
Fosco, Cesar Daniel; Lombardo, Fernando Cesar; Mazzitelli, Francisco Diego; Derivative expansion for the electromagnetic and Neumann-Casimir effects in 2+1 dimensions with imperfect mirrors; American Physical Society; Physical Review D; 91; 10; 5-2015; 1-9; 105019
Compartir
Altmétricas