Mostrar el registro sencillo del ítem

dc.contributor.author
Waldner, François  
dc.contributor.author
de Abelleyra, Diego  
dc.contributor.author
Verón, Santiago Ramón  
dc.contributor.author
Zhang, Miao  
dc.contributor.author
Wu, Bingfang  
dc.contributor.author
Plotnikov, Dmitry  
dc.contributor.author
Bartalevev, Sergey  
dc.contributor.author
Lavreniuk, Mykola  
dc.contributor.author
Skakun, Sergii  
dc.contributor.author
Kussul, Nataliia  
dc.contributor.author
Le Maire, Guerric  
dc.contributor.author
Dupuy, Stéphane  
dc.contributor.author
Jarvis, Ian  
dc.contributor.author
Defourny, Pierre  
dc.date.available
2018-05-04T19:24:39Z  
dc.date.issued
2016-06  
dc.identifier.citation
Waldner, François; de Abelleyra, Diego; Verón, Santiago Ramón; Zhang, Miao; Wu, Bingfang; et al.; Towards a set of agrosystem-specific cropland mapping methods to address the global cropland diversity; Taylor & Francis; International Journal of Remote Sensing; 37; 14; 6-2016; 3196-3231  
dc.identifier.issn
0143-1161  
dc.identifier.uri
http://hdl.handle.net/11336/44210  
dc.description.abstract
Accurate cropland information is of paramount importance for crop monitoring. This study compares five existing cropland mapping methodologies over five contrasting Joint Experiment for Crop Assessment and Monitoring (JECAM) sites of medium to large average field size using the time series of 7-day 250 m Moderate Resolution Imaging Spectroradiometer (MODIS) mean composites (red and near-infrared channels). Different strategies were devised to assess the accuracy of the classification methods: confusion matrices and derived accuracy indicators with and without equalizing class proportions, assessing the pairwise difference error rates and accounting for the spatial resolution bias. The robustness of the accuracy with respect to a reduction of the quantity of calibration data available was also assessed by a bootstrap approach in which the amount of training data was systematically reduced. Methods reached overall accuracies ranging from 85% to 95%, which demonstrates the ability of 250 m imagery to resolve fields down to 20 ha. Despite significantly different error rates, the site effect was found to persistently dominate the method effect. This was confirmed even after removing the share of the classification due to the spatial resolution of the satellite data (from 10% to 30%). This underlines the effect of other agrosystems characteristics such as cloudiness, crop diversity, and calendar on the ability to perform accurately. All methods have potential for large area cropland mapping as they provided accurate results with 20% of the calibration data, e.g. 2% of the study area in Ukraine. To better address the global cropland diversity, results advocate movement towards a set of cropland classification methods that could be applied regionally according to their respective performance in specific landscapes.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Taylor & Francis  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Land-Use  
dc.subject
Remote-Sensing  
dc.subject
Jecam  
dc.subject
Comparison  
dc.subject.classification
Meteorología y Ciencias Atmosféricas  
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Towards a set of agrosystem-specific cropland mapping methods to address the global cropland diversity  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-04-27T18:51:58Z  
dc.identifier.eissn
1366-5901  
dc.journal.volume
37  
dc.journal.number
14  
dc.journal.pagination
3196-3231  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Waldner, François. Université Catholique de Louvain; Bélgica  
dc.description.fil
Fil: de Abelleyra, Diego. Instituto Nacional de Tecnología Agropecuaria; Argentina  
dc.description.fil
Fil: Verón, Santiago Ramón. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Métodos Cuantitativos y Sistemas de Información; Argentina. Instituto Nacional de Tecnología Agropecuaria; Argentina. Université Catholique de Louvain; Bélgica  
dc.description.fil
Fil: Zhang, Miao. Chinese Academy of Sciences; República de China  
dc.description.fil
Fil: Wu, Bingfang. Chinese Academy of Sciences; República de China  
dc.description.fil
Fil: Plotnikov, Dmitry. Space Research Institute Of Russian Academy Of Sciences; Rusia. Université Catholique de Louvain; Bélgica  
dc.description.fil
Fil: Bartalevev, Sergey. Space Research Institute Of Russian Academy Of Sciences; Rusia  
dc.description.fil
Fil: Lavreniuk, Mykola. Space Research Institute Nas And Ssa; Ucrania  
dc.description.fil
Fil: Skakun, Sergii. Space Research Institute Nas And Ssa; Ucrania  
dc.description.fil
Fil: Kussul, Nataliia. Space Research Institute Nas And Ssa; Ucrania. Université Catholique de Louvain; Bélgica  
dc.description.fil
Fil: Le Maire, Guerric. Ministerio da Agricultura Pecuaria e Abastecimento de Brasil. Empresa Brasileira de Pesquisa Agropecuaria; Brasil  
dc.description.fil
Fil: Dupuy, Stéphane. No especifica;  
dc.description.fil
Fil: Jarvis, Ian. Lethbridge Research Centre. Agriculture And Agri-foods; Canadá  
dc.description.fil
Fil: Defourny, Pierre. Université Catholique de Louvain; Bélgica  
dc.journal.title
International Journal of Remote Sensing  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/abs/10.1080/01431161.2016.1194545  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1080/01431161.2016.1194545