Artículo
Strain-gradient-induced switching of nanoscale domains in free-standing ultrathin films
Fecha de publicación:
04/2014
Editorial:
American Physical Society
Revista:
Physical Review B
ISSN:
0163-1829
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We report first-principle atomistic simulations of the effect of local strain gradients on the nanoscale domain morphology of free-standing PbTiO3 ultrathin films. First, the ferroelectric properties of free films at the atomic level are reviewed. For the explored thicknesses (10 to 23 unit cells), we find flux-closure domain structures whose morphology is thickness dependent. A critical value of 20 unit cells is observed: thinner films show structures with 90º domain loops, whereas thicker ones develop, in addition, 180º domain walls, giving rise to structures of the Landau-Lifshitz type. When a local and compressive strain gradient at the top surface is imposed, the gradient is able to switch the polarization of the downward domains, but not to the opposite ones. The evolution of the domain pattern as a function of the strain gradient strength consequently depends on the film thickness. Our simulations indicate that in thinner films, first the 90º domain loops migrate towards the strain-gradient region, and then the polarization in that zone is gradually switched. In thicker films, instead, the switching in the strain-gradient region is progressive, not involving domain-wall motion, which is attributed to less mobile 180º domain walls. The ferroelectric switching is understood based on the knowledge of the local atomic properties, and the results confirm that mechanical flexoelectricity provides a means to control the nanodomain pattern in ferroelectric systems.
Palabras clave:
Thin Films
,
Ferroelctricity
,
Atomistic
,
Classical Force Field
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IFIS - LITORAL)
Articulos de INST.DE FISICA DEL LITORAL
Articulos de INST.DE FISICA DEL LITORAL
Citación
Belletti, Gustavo Daniel; Dalosto, Sergio Daniel; Tinte, Silvia Noemi; Strain-gradient-induced switching of nanoscale domains in free-standing ultrathin films; American Physical Society; Physical Review B; 89; 17; 4-2014; 174104-174104
Compartir
Altmétricas