Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Natural vibrations and buckling of a spatial lattice structure using a continuous model derived from an energy approach

Guzmán, Alberto Marcelo; Rosales, Marta BeatrizIcon ; Filipich, Carlos Pedro
Fecha de publicación: 06/2017
Editorial: Korean Society of Steel Construction
Revista: International Journal of Steel Structures
ISSN: 1598-2351
e-ISSN: 2093-6311
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ingeniería Civil

Resumen

Lattice structures composed by parallel members named chords (or legs for vertical configurations) and connected by diagonals are very common among steel constructions in Civil and Mechanical Engineering and in particular, in the telecommunications industry. In the present study, a continuous model of a typical spatial lattice structure is derived. The legs configure a triangular cross-section and the diagonals are arranged in a zig-zag pattern. The differential system is derived from the potential and kinematic energies of the discrete model as the sums of each component contribution. Then, after accepting that the number of diagonals is large enough, the sums are approximated in the limit with classical integrals. Thus, the discrete system is replaced with a continuous formulation. The natural vibration problem of a lattice mast with a zig-zag diagonal pattern is studied using the proposed model. Also, the axial load influence is also accounted for through the second-order effect allowing to solve the buckling problem. Static deflection problems are also addressed. The Hamilton principle application yields the governing differential system in terms of nine unknown displacements. Several examples are solved numerically and the results are compared with the outcomes of a finite element spatial model. It is shown that there is an excellent agreement. The proposed continuous model can represent adequately the spatial lattice with a strong reduction in the degrees of freedom and the time of computation of the solution in comparison with a finite element approach.
Palabras clave: Spatial Lattice , Energy , Frequencies , Static Deflection , Buckling
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 2.826Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/43875
URL: https://link.springer.com/article/10.1007%2Fs13296-017-6016-6
DOI: http://dx.doi.org/10.1007/s13296-017-6016-6
Colecciones
Articulos(CCT - BAHIA BLANCA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - BAHIA BLANCA
Citación
Guzmán, Alberto Marcelo; Rosales, Marta Beatriz; Filipich, Carlos Pedro; Natural vibrations and buckling of a spatial lattice structure using a continuous model derived from an energy approach; Korean Society of Steel Construction; International Journal of Steel Structures; 17; 2; 6-2017; 565-578
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES