Mostrar el registro sencillo del ítem
dc.contributor.author
Goodarzi, Mohammad
dc.contributor.author
Coelho, Leandro dos Santos
dc.contributor.author
Honarparvar, Bahareh
dc.contributor.author
Ortiz, Erlinda del Valle
dc.contributor.author
Duchowicz, Pablo Román
dc.date.available
2018-04-27T21:47:38Z
dc.date.issued
2016-06
dc.identifier.citation
Goodarzi, Mohammad; Coelho, Leandro dos Santos; Honarparvar, Bahareh; Ortiz, Erlinda del Valle; Duchowicz, Pablo Román; Application of quantitative structure-property relationship analysis to estimate the vapor pressure of pesticides; Academic Press Inc Elsevier Science; Ecotoxicology and Environmental Safety; 128; 6-2016; 52-60
dc.identifier.issn
0147-6513
dc.identifier.uri
http://hdl.handle.net/11336/43785
dc.description.abstract
The application of molecular descriptors in describing Quantitative Structure Property Relationships (QSPR) for the estimation of vapor pressure (VP) of pesticides is of ongoing interest. In this study, QSPR models were developed using multiple linear regression (MLR) methods to predict the vapor pressure values of 162 pesticides. Several feature selection methods, namely the replacement method (RM), genetic algorithms (GA), stepwise regression (SR) and forward selection (FS), were used to select the most relevant molecular descriptors from a pool of variables. The optimum subset of molecular descriptors was used to build a QSPR model to estimate the vapor pressures of the selected pesticides. The Replacement Method improved the predictive ability of vapor pressures and was more reliable for the feature selection of these selected pesticides. The results provided satisfactory MLR models that had a satisfactory predictive ability, and will be important for predicting vapor pressure values for compounds with unknown values. This study may open new opportunities for designing and developing new pesticide.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Academic Press Inc Elsevier Science
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.subject
Teoría Qspr
dc.subject
Pesticides
dc.subject
Vapor Pressure
dc.subject.classification
Otras Ciencias Químicas
dc.subject.classification
Ciencias Químicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Application of quantitative structure-property relationship analysis to estimate the vapor pressure of pesticides
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-04-27T18:53:02Z
dc.journal.volume
128
dc.journal.pagination
52-60
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Goodarzi, Mohammad. Katholikie Universiteit Leuven; Bélgica
dc.description.fil
Fil: Coelho, Leandro dos Santos. Universidade Federal do Paraná; Brasil
dc.description.fil
Fil: Honarparvar, Bahareh. University of KwaZulu-Natal; Sudáfrica
dc.description.fil
Fil: Ortiz, Erlinda del Valle. Universidad Nacional de Catamarca. Facultad de Tecnología y Ciencias Aplicadas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Duchowicz, Pablo Román. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina
dc.journal.title
Ecotoxicology and Environmental Safety
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.ecoenv.2016.01.020
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0147651316300203
Archivos asociados