Mostrar el registro sencillo del ítem

dc.contributor.author
Goodarzi, Mohammad  
dc.contributor.author
Coelho, Leandro dos Santos  
dc.contributor.author
Honarparvar, Bahareh  
dc.contributor.author
Ortiz, Erlinda del Valle  
dc.contributor.author
Duchowicz, Pablo Román  
dc.date.available
2018-04-27T21:47:38Z  
dc.date.issued
2016-06  
dc.identifier.citation
Goodarzi, Mohammad; Coelho, Leandro dos Santos; Honarparvar, Bahareh; Ortiz, Erlinda del Valle; Duchowicz, Pablo Román; Application of quantitative structure-property relationship analysis to estimate the vapor pressure of pesticides; Academic Press Inc Elsevier Science; Ecotoxicology and Environmental Safety; 128; 6-2016; 52-60  
dc.identifier.issn
0147-6513  
dc.identifier.uri
http://hdl.handle.net/11336/43785  
dc.description.abstract
The application of molecular descriptors in describing Quantitative Structure Property Relationships (QSPR) for the estimation of vapor pressure (VP) of pesticides is of ongoing interest. In this study, QSPR models were developed using multiple linear regression (MLR) methods to predict the vapor pressure values of 162 pesticides. Several feature selection methods, namely the replacement method (RM), genetic algorithms (GA), stepwise regression (SR) and forward selection (FS), were used to select the most relevant molecular descriptors from a pool of variables. The optimum subset of molecular descriptors was used to build a QSPR model to estimate the vapor pressures of the selected pesticides. The Replacement Method improved the predictive ability of vapor pressures and was more reliable for the feature selection of these selected pesticides. The results provided satisfactory MLR models that had a satisfactory predictive ability, and will be important for predicting vapor pressure values for compounds with unknown values. This study may open new opportunities for designing and developing new pesticide.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Academic Press Inc Elsevier Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
Teoría Qspr  
dc.subject
Pesticides  
dc.subject
Vapor Pressure  
dc.subject.classification
Otras Ciencias Químicas  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Application of quantitative structure-property relationship analysis to estimate the vapor pressure of pesticides  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-04-27T18:53:02Z  
dc.journal.volume
128  
dc.journal.pagination
52-60  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Goodarzi, Mohammad. Katholikie Universiteit Leuven; Bélgica  
dc.description.fil
Fil: Coelho, Leandro dos Santos. Universidade Federal do Paraná; Brasil  
dc.description.fil
Fil: Honarparvar, Bahareh. University of KwaZulu-Natal; Sudáfrica  
dc.description.fil
Fil: Ortiz, Erlinda del Valle. Universidad Nacional de Catamarca. Facultad de Tecnología y Ciencias Aplicadas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Duchowicz, Pablo Román. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina  
dc.journal.title
Ecotoxicology and Environmental Safety  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.ecoenv.2016.01.020  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0147651316300203