Mostrar el registro sencillo del ítem
dc.contributor.author
Colominas, Marcelo Alejandro

dc.contributor.author
Humeau Heurtier, Anne
dc.contributor.author
Schlotthauer, Gaston

dc.date.available
2018-04-27T19:14:56Z
dc.date.issued
2016-03
dc.identifier.citation
Colominas, Marcelo Alejandro; Humeau Heurtier, Anne; Schlotthauer, Gaston; Orientation-Independent Empirical Mode Decomposition for Images Based on Unconstrained Optimization; Institute of Electrical and Electronics Engineers; Ieee Transactions on Image Processing; 25; 5; 3-2016; 2288-2297
dc.identifier.issn
1057-7149
dc.identifier.uri
http://hdl.handle.net/11336/43706
dc.description.abstract
This paper introduces a 2D extension of the empirical mode decomposition (EMD), through a novel approach based on unconstrained optimization. EMD is a fully data-driven method that locally separates, in a completely data-driven and unsupervised manner, signals into fast and slow oscillations. The present proposal implements the method in a very simple and fast way, and it is compared with the state-of-the-art methods evidencing the advantages of being computationally efficient, orientation-independent, and leads to better performances for the decomposition of amplitude modulated-frequency modulated (AM-FM) images. The resulting genuine 2D method is successfully tested on artificial AM-FM images and its capabilities are illustrated on a biomedical example. The proposed framework leaves room for an nD extension (n > 2 ).
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Institute of Electrical and Electronics Engineers

dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Empirical Mode Decomposition
dc.subject
Unconstrained Optimization
dc.subject
Data-Driven
dc.subject
Non-Stationary Image
dc.subject.classification
Ingeniería de Sistemas y Comunicaciones

dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información

dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS

dc.title
Orientation-Independent Empirical Mode Decomposition for Images Based on Unconstrained Optimization
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-04-27T14:00:46Z
dc.journal.volume
25
dc.journal.number
5
dc.journal.pagination
2288-2297
dc.journal.pais
Estados Unidos

dc.description.fil
Fil: Colominas, Marcelo Alejandro. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Humeau Heurtier, Anne. Universidad de Angers; Francia
dc.description.fil
Fil: Schlotthauer, Gaston. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.journal.title
Ieee Transactions on Image Processing

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1109/TIP.2016.2541959
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/7433433
Archivos asociados