Artículo
Combined molecular MRI and immuno-spin trapping for in vivo detection of free radicals in orthotopic mouse GL261 glioma
Towner, Rheal A.; Smith, Nataliya; Saunders, Debra; Coutinho, Patricia De Souza; Henry, Leah; Lupu, Florea; Silasi Mansat, Robert; Ehernshaft, Marilyn; Mason, Ronald P.; Gomez-Mejiba, Sandra Esther
; Ramirez, Dario
Fecha de publicación:
12/2013
Editorial:
Elsevier
Revista:
Biochimica et Biophysica Acta - Molecular Basis of Disease
ISSN:
0925-4439
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Free radicals play a major role in gliomas. By combining immuno-spin-trapping (IST) and molecular magnetic resonance imaging (mMRI), in vivo levels of free radicals were detected within mice bearing orthotopic GL261 gliomas. The nitrone spin trap DMPO (5,5-dimethyl pyrroline N-oxide) was administered prior to injection of an anti-DMPO probe (anti-DMPO antibody covalently bound to a bovine serum albumin (BSA)–Gd (gadolinium)-DTPA (diethylene triamine penta acetic acid)–biotin MRI contrast agent) to trap tumor-associated free radicals. mMRI detected the presence of anti-DMPO adducts by either a significant sustained increase (p < 0.001) in MR signal intensity or a significant decrease (p < 0.001) in T1 relaxation, measured as %T1 change. In vitro assessment of the anti-DMPO probe indicated a significant decrease (p < 0.0001) in T1 relaxation in GL261 cells that were oxidatively stressed with hydrogen peroxide, compared to controls. The biotin moiety of the anti-DMPO probe was targeted with fluorescently-labeled streptavidin to locate the anti-DMPO probe in excised brain tissues. As a negative control a non-specific IgG antibody covalently bound to the albumin–Gd-DTPA–biotin construct was used. DMPO adducts were also confirmed in tumor tissue from animals administered DMPO, compared to non-tumor brain tissue. GL261 gliomas were found to have significantly increased malondialdehyde (MDA) protein adducts (p < 0.001) and 3-nitrotyrosine (3-NT) (p < 0.05) compared to normal mouse brain tissue, indicating increased oxidized lipids and proteins, respectively. Co-localization of the anti-DMPO probe with either 3-NT or 4-hydroxynonenal was also observed. This is the first report regarding the detection of in vivo levels of free radicals from a glioma model.
Palabras clave:
Glioma
,
Free Radical
,
Immuno-Spin Trapping
,
Mri
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMIBIO-SL)
Articulos de INST. MULTIDICIPLINARIO DE INV. BIO. DE SAN LUIS
Articulos de INST. MULTIDICIPLINARIO DE INV. BIO. DE SAN LUIS
Citación
Towner, Rheal A.; Smith, Nataliya; Saunders, Debra; Coutinho, Patricia De Souza; Henry, Leah; et al.; Combined molecular MRI and immuno-spin trapping for in vivo detection of free radicals in orthotopic mouse GL261 glioma; Elsevier; Biochimica et Biophysica Acta - Molecular Basis of Disease; 1832; 12; 12-2013; 2153-2161
Compartir
Altmétricas