Mostrar el registro sencillo del ítem
dc.contributor.author
Baravalle, Rodrigo Guillermo
dc.contributor.author
Thomsen, Felix Sebastian Leo
dc.contributor.author
Delrieux, Claudio Augusto
dc.contributor.author
Lu, Yongtao
dc.contributor.author
Gómez, Juan Carlos
dc.contributor.author
Stošić, Borko
dc.contributor.author
Stošić, Tatijana
dc.date.available
2018-04-26T19:18:03Z
dc.date.issued
2017-12
dc.identifier.citation
Baravalle, Rodrigo Guillermo; Thomsen, Felix Sebastian Leo; Delrieux, Claudio Augusto; Lu, Yongtao; Gómez, Juan Carlos; et al.; Three-dimensional multifractal analysis of trabecular bone under clinical computed tomography; American Association of Physicists in Medicine; Medical Physics; 44; 12; 12-2017; 6404-6412
dc.identifier.issn
0094-2405
dc.identifier.uri
http://hdl.handle.net/11336/43581
dc.description.abstract
Purpose: An adequate understanding of bone structural properties is critical for predicting fragility conditions caused by diseases such as osteoporosis, and in gauging the success of fracture prevention treatments. In this work we aim to develop multiresolution image analysis techniques to extrapolate high-resolution images predictive power to images taken in clinical conditions. Methods: We performed multifractal analysis (MFA) on a set of 17 ex vivo human vertebrae clinical CT scans. The vertebræ failure loads (FFailure) were experimentally measured. We combined bone mineral density (BMD) with different multifractal dimensions, and BMD with multiresolution statistics (e.g., skewness, kurtosis) of MFA curves, to obtain linear models to predict FFailure. Furthermore we obtained short- and long-term precisions from simulated in vivo scans, using a clinical CT scanner. Ground-truth data - high-resolution images - were obtained with a High-Resolution Peripheral Quantitative Computed Tomography (HRpQCT) scanner. Results: At the same level of detail, BMD combined with traditional multifractal descriptors (Lipschitz-Hölder exponents), and BMD with monofractal features showed similar prediction powers in predicting FFailure (87%, adj. R2). However, at different levels of details, the prediction power of BMD with multifractal features raises to 92% (adj. R2) of FFailure. Our main finding is that a simpler but slightly less accurate model, combining BMD and the skewness of the resulting multifractal curves, predicts 90% (adj. R2) of FFailure. Conclusions: Compared to monofractal and standard bone measures, multifractal analysis captured key insights in the conditions leading to FFailure. Instead of raw multifractal descriptors, the statistics of multifractal curves can be used in several other contexts, facilitating further research.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
American Association of Physicists in Medicine
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.subject
Bone
dc.subject
Failure Load
dc.subject
Multifractal
dc.subject
Three-Dimensional Multifractal Analysis
dc.subject.classification
Ciencias de la Computación
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Three-dimensional multifractal analysis of trabecular bone under clinical computed tomography
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-04-16T17:43:02Z
dc.journal.volume
44
dc.journal.number
12
dc.journal.pagination
6404-6412
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Nueva York
dc.description.fil
Fil: Baravalle, Rodrigo Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
dc.description.fil
Fil: Thomsen, Felix Sebastian Leo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Sur; Argentina
dc.description.fil
Fil: Delrieux, Claudio Augusto. Universidad Nacional del Sur; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Lu, Yongtao. Dalian University of Technology; China
dc.description.fil
Fil: Gómez, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
dc.description.fil
Fil: Stošić, Borko. Universidade Federal Rural Pernambuco; Brasil
dc.description.fil
Fil: Stošić, Tatijana. Universidade Federal Rural Pernambuco; Brasil
dc.journal.title
Medical Physics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1002/mp.12603
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://aapm.onlinelibrary.wiley.com/doi/abs/10.1002/mp.12603
Archivos asociados