Mostrar el registro sencillo del ítem
dc.contributor.author
Pouquet, A.
               
            
dc.contributor.author
Marino, Raffaele 
               
            
 
               
            dc.contributor.author
Mininni, Pablo Daniel 
               
            
 
               
            dc.contributor.author
Rosenberg, Duane 
               
            
 
               
            dc.date.available
2018-04-26T18:44:58Z
               
            
dc.date.issued
2017-11
               
            
dc.identifier.citation
Pouquet, A.; Marino, Raffaele; Mininni, Pablo Daniel; Rosenberg, Duane; Dual constant-flux energy cascades to both large scales and small scales; American Institute of Physics; Physics of Fluids; 29; 11; 11-2017; 1-19
               
            
dc.identifier.issn
1070-6631
               
            
dc.identifier.uri
http://hdl.handle.net/11336/43573
               
            
dc.description.abstract
In this paper, we present an overview of concepts and data concerning inverse cascades of excitation towards scales larger than the forcing scale in a variety of contexts, from two-dimensional fluids and wave turbulence to geophysical flows in the presence of rotation and stratification. We briefly discuss the role of anisotropy in the occurrence and properties of such cascades. We then show that the cascade of some invariant, for example, the total energy, may be transferred through nonlinear interactions to both the small scales and the large scales, with in each case a constant flux. This is in contrast to the classical picture, and we illustrate such a dual cascade in the context of atmospheric and oceanic observations, direct numerical simulations, and modeling. We also show that this dual cascade of total energy can in fact be decomposed in some cases into separate cascades of the kinetic and potential energies, provided the Froude and Rossby numbers are small enough. In all cases, the potential energy flux remains small, of the order of 10% or less relative to the kinetic energy flux. Finally, we demonstrate that, in the small-scale inertial range, approximate equipartition between potential and kinetic modes is obtained, leading to an energy ratio close to one, with strong departure at large scales due to the dominant kinetic energy inverse cascade and piling-up at the lowest spatial frequency and at small scales due to unbalanced dissipation processes, even though the Prandtl number is equal to one.
               
            
dc.format
application/pdf
               
            
dc.language.iso
eng
               
            
dc.publisher
American Institute of Physics 
               
            
 
               
            dc.rights
info:eu-repo/semantics/openAccess
               
            
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
               
            
dc.subject
Turbulence
               
            
dc.subject
Inverse Cascades
               
            
dc.subject
Rotating Flows
               
            
dc.subject
Stratified Flows
               
            
dc.subject.classification
Astronomía 
               
            
 
               
            dc.subject.classification
Ciencias Físicas 
               
            
 
               
            dc.subject.classification
CIENCIAS NATURALES Y EXACTAS 
               
            
 
               
            dc.title
Dual constant-flux energy cascades to both large scales and small scales
               
            
dc.type
info:eu-repo/semantics/article
               
            
dc.type
info:ar-repo/semantics/artículo
               
            
dc.type
info:eu-repo/semantics/publishedVersion
               
            
dc.date.updated
2018-04-16T14:30:34Z
               
            
dc.journal.volume
29
               
            
dc.journal.number
11
               
            
dc.journal.pagination
1-19
               
            
dc.journal.pais
Estados Unidos 
               
            
 
               
            dc.journal.ciudad
Nueva York
               
            
dc.description.fil
Fil: Pouquet, A.. National Center for Atmospheric Research; Estados Unidos. State University of Colorado Boulder; Estados Unidos
               
            
dc.description.fil
Fil: Marino, Raffaele. École Centrale de Lyon; Francia
               
            
dc.description.fil
Fil: Mininni, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
               
            
dc.description.fil
Fil: Rosenberg, Duane. National Oceanic and Atmospheric Administration; Estados Unidos
               
            
dc.journal.title
Physics of Fluids 
               
            
 
               
            dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/10.1063/1.5000730
               
            
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1063/1.5000730
               
            
Archivos asociados
 
