Artículo
The analysis of structural changes in the brain through Magnetic Resonance Imaging (MRI) provides useful information for diagnosis and clinical treatment of patients with pathologies like Alzheimer disease and dementia. While complexity achieved by the MRI equipment is high, quantification of structures and tissues has not been entirely solved. In the present paper, MRI segmentation is discussed using a new classification method called Type-2 Label-based Fuzzy Predicate Classification (T2-LFPC). From labeled data (pixels of different tissues selected by medical experts) a random partition is defined and the obtained subsets are analyzed discovering groups with similar properties called class prototypes. Using theses prototypes, interval type-2 membership functions and fuzzy predicates are defined. Parameters regarding the fuzzy predicates are optimized. Fuzzy predicates are applied on unlabeled pixels performing the segmentation and volumes occupied for the tissues into the intracranial cavity are computed. Results are compared to those of known methods. A method of measuring the progressive atrophy and possible changes compared to a therapeutic effect should be essentially automatic and therefore independent of the radiologist. Results show that the performance of the proposed method is highly acceptable as a contribution for this requirement. Advantages of this approach are presented throughout this paper. The analysis of structural changes in the brain through Magnetic Resonance Imaging (MRI) provides useful information for diagnosis and clinical treatment of patients with pathologies like Alzheimer disease and dementia. While complexity achieved by the MRI equipment is high, quantification of structures and tissues has not been entirely solved. In the present paper, MRI segmentation is discussed using a new classification method called Type-2 Label-based Fuzzy Predicate Classification (T2-LFPC). From labeled data (pixels of different tissues selected by medical experts) a random partition is defined and the obtained subsets are analyzed discovering groups with similar properties called class prototypes. Using theses prototypes, interval type-2 membership functions and fuzzy predicates are defined. Parameters regarding the fuzzy predicates are optimized. Fuzzy predicates are applied on unlabeled pixels performing the segmentation and volumes occupied for the tissues into the intracranial cavity are computed. Results are compared to those of known methods. A method of measuring the progressive atrophy and possible changes compared to a therapeutic effect should be essentially automatic and therefore independent of the radiologist. Results show that the performance of the proposed method is highly acceptable as a contribution for this requirement. Advantages of this approach are presented throughout this paper.
Interval type-2 fuzzy predicates for brain magnetic resonance image segmentation
Comas, Diego Sebastián
; Meschino, Gustavo Javier; Costantino, Sebastián; Capiel, Carlos; Ballarin, Virginia Laura
Fecha de publicación:
12/2017
Editorial:
Sociedad Argentina de Bioingeniería
Revista:
Revista Argentina de Bioingeniería
ISSN:
2591-376X
Idioma:
Español
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - MAR DEL PLATA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - MAR DEL PLATA
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - MAR DEL PLATA
Citación
Comas, Diego Sebastián; Meschino, Gustavo Javier; Costantino, Sebastián; Capiel, Carlos; Ballarin, Virginia Laura; Interval type-2 fuzzy predicates for brain magnetic resonance image segmentation; Sociedad Argentina de Bioingeniería; Revista Argentina de Bioingeniería; 21; 2; 12-2017; 11-19
Compartir