Mostrar el registro sencillo del ítem

dc.contributor.author
Capriotti, Santiago  
dc.date.available
2018-04-23T18:23:43Z  
dc.date.issued
2017-12-12  
dc.identifier.citation
Capriotti, Santiago; Unified formalism for Palatini gravity; World Scientific; International Journal of Geometric Methods in Modern Physics; 15; 3; 12-12-2017; 1-33  
dc.identifier.issn
0219-8878  
dc.identifier.uri
http://hdl.handle.net/11336/43072  
dc.description.abstract
This paper is devoted to the construction of a unified formalism for Palatini and unimodular gravity. The idea is to employ a relationship between unified formalism for a Griffiths variational problem and its classical Lepage-equivalent variational problem. The main geometrical tools involved in these constructions are canonical forms living on the first jet of the frame bundle for the spacetime manifold. These forms play an essential role in providing a global version of the Palatini Lagrangian and expressing the metricity condition in an invariant form. With them, we were able to find the associated equations of motion in invariant terms and, by using previous results from the literature, to prove their involutivity. As a bonus, we showed how this construction can be used to provide a unified formalism for the so-called unimodular gravity by employing a reduction of the structure group of the frame bundle to the special linear group.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
World Scientific  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc/2.5/ar/  
dc.subject
Variational Problems  
dc.subject
Unified Formalism  
dc.subject
Palatini Gravity  
dc.subject
Unimodular Gravity  
dc.subject
Connection Bundle  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Unified formalism for Palatini gravity  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-04-16T17:43:41Z  
dc.identifier.eissn
1793-6977  
dc.journal.volume
15  
dc.journal.number
3  
dc.journal.pagination
1-33  
dc.journal.pais
Singapur  
dc.journal.ciudad
Toh Tuck Link  
dc.description.fil
Fil: Capriotti, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Matemática; Argentina  
dc.journal.title
International Journal of Geometric Methods in Modern Physics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.worldscientific.com/doi/abs/10.1142/S0219887818500445  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1142/S0219887818500445