Mostrar el registro sencillo del ítem
dc.contributor.author
Capriotti, Santiago
dc.date.available
2018-04-23T18:23:43Z
dc.date.issued
2017-12-12
dc.identifier.citation
Capriotti, Santiago; Unified formalism for Palatini gravity; World Scientific; International Journal of Geometric Methods in Modern Physics; 15; 3; 12-12-2017; 1-33
dc.identifier.issn
0219-8878
dc.identifier.uri
http://hdl.handle.net/11336/43072
dc.description.abstract
This paper is devoted to the construction of a unified formalism for Palatini and unimodular gravity. The idea is to employ a relationship between unified formalism for a Griffiths variational problem and its classical Lepage-equivalent variational problem. The main geometrical tools involved in these constructions are canonical forms living on the first jet of the frame bundle for the spacetime manifold. These forms play an essential role in providing a global version of the Palatini Lagrangian and expressing the metricity condition in an invariant form. With them, we were able to find the associated equations of motion in invariant terms and, by using previous results from the literature, to prove their involutivity. As a bonus, we showed how this construction can be used to provide a unified formalism for the so-called unimodular gravity by employing a reduction of the structure group of the frame bundle to the special linear group.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
World Scientific
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc/2.5/ar/
dc.subject
Variational Problems
dc.subject
Unified Formalism
dc.subject
Palatini Gravity
dc.subject
Unimodular Gravity
dc.subject
Connection Bundle
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Unified formalism for Palatini gravity
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-04-16T17:43:41Z
dc.identifier.eissn
1793-6977
dc.journal.volume
15
dc.journal.number
3
dc.journal.pagination
1-33
dc.journal.pais
Singapur
dc.journal.ciudad
Toh Tuck Link
dc.description.fil
Fil: Capriotti, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Matemática; Argentina
dc.journal.title
International Journal of Geometric Methods in Modern Physics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.worldscientific.com/doi/abs/10.1142/S0219887818500445
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1142/S0219887818500445
Archivos asociados