Mostrar el registro sencillo del ítem
dc.contributor.author
Ferraro, Sebastián José
dc.contributor.author
de León, Manuel
dc.contributor.author
Marrero, Juan Carlos
dc.contributor.author
Martin de Diego, David
dc.contributor.author
Vaquero, Miguel
dc.date.available
2018-04-23T17:31:25Z
dc.date.issued
2017-10-09
dc.identifier.citation
Ferraro, Sebastián José; de León, Manuel; Marrero, Juan Carlos; Martin de Diego, David; Vaquero, Miguel; On the Geometry of the Hamilton-Jacobi Equation and Generating Functions; Springer; Archive For Rational Mechanics And Analysis; 226; 1; 9-10-2017; 243-302
dc.identifier.issn
0003-9527
dc.identifier.uri
http://hdl.handle.net/11336/43043
dc.description.abstract
In this paper we develop a geometric version of the Hamilton-Jacobi equation in the Poisson setting. Specifically, we "geometrize" what is usually called a complete solution of the Hamilton-Jacobi equation. We use some well-known results about symplectic groupoids, in particular cotangent groupoids, as a keystone for the construction of our framework. Our methodology follows the ambitious program proposed by Weinstein (In Mechanics day (Waterloo, ON, 1992), volume 7 of fields institute communications, American Mathematical Society, Providence, 1996) in order to develop geometric formulations of the dynamical behavior of Lagrangian and Hamiltonian systems on Lie algebroids and Lie groupoids. This procedure allows us to take symmetries into account, and, as a by-product, we recover results from Channell and Scovel (Phys D 50(1):80-88, 1991), Ge (Indiana Univ. Math. J. 39(3):859-876, 1990), Ge and Marsden (Phys Lett A 133(3):134-139, 1988), but even in these situations our approach is new. A theory of generating functions for the Poisson structures considered here is also developed following the same pattern, solving a longstanding problem of the area: how to obtain a generating function for the identity transformation and the nearby Poisson automorphisms of Poisson manifolds. A direct application of our results gives the construction of a family of Poisson integrators, that is, integrators that conserve the underlying Poisson geometry. These integrators are implemented in the paper in benchmark problems. Some conclusions, current and future directions of research are shown at the end of the paper.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.subject
Hamilton-Jacobi Theory
dc.subject
Symplectic Groupoids
dc.subject
Lagrangian Submanifolds
dc.subject
Symmetries
dc.subject
Poisson Manifolds
dc.subject
Poisson Integrators
dc.subject
Generating Functions
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
On the Geometry of the Hamilton-Jacobi Equation and Generating Functions
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-04-16T17:42:55Z
dc.journal.volume
226
dc.journal.number
1
dc.journal.pagination
243-302
dc.journal.pais
Alemania
dc.journal.ciudad
Berlín
dc.description.fil
Fil: Ferraro, Sebastián José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
dc.description.fil
Fil: de León, Manuel. Consejo Superior de Investigaciones Científicas; España. Instituto de Ciencias Matemáticas; España
dc.description.fil
Fil: Marrero, Juan Carlos. Universidad de La Laguna; España
dc.description.fil
Fil: Martin de Diego, David. Instituto de Ciencias Matemáticas; España. Consejo Superior de Investigaciones Científicas; España
dc.description.fil
Fil: Vaquero, Miguel. Consejo Superior de Investigaciones Científicas; España. Instituto de Ciencias Matemáticas; España
dc.journal.title
Archive For Rational Mechanics And Analysis
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00205-017-1133-0
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s00205-017-1133-0
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1606.00847
Archivos asociados