Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Mapping environmental susceptibility to Saint Louis encephalitis virus, based on a decision tree model of remotelysensed data

Rotela, Camilo HugoIcon ; Spinsanti, Lorena Ivana; Lamfri, Mario; Contigiani de Minio, Marta Silvia; Almiron, Walter RicardoIcon ; Scavuzzo, Carlos Marcelo
Fecha de publicación: 11/2011
Editorial: Univ Naples Federico Ii
Revista: Geospatial Health
ISSN: 1827-1987
e-ISSN: 1970-7096
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Biología

Resumen

In response to the first human outbreak (January - May 2005) of Saint Louis encephalitis (SLE) virus in Córdoba province, Argentina, we developed an environmental SLE virus risk map for the capital, i.e. Córdoba city. The aim was to provide a map capable of detecting macro-environmental factors associated with the spatial distribution of SLE cases, based on remotely sensed data and a geographical information system. Vegetation, soil brightness, humidity status, distances to water-bodies and areas covered by vegetation were assessed based on pre-outbreak images provided by the Landsat 5TM satellite. A strong inverse relationship between the number of humans infected by SLEV and distance to high-vigor vegetation was noted. A statistical non-hierarchic decision tree model was constructed, based on environmental variables representing the areas surrounding patient residences. From this point of view, 18% of the city could be classified as being at high risk for SLEV infection, while 34% carried a low risk, or none at all. Taking the whole 2005 epidemic into account, 80% of the cases came from areas classified by the model as medium-high or high risk. Almost 46% of the cases were registered in high-risk areas, while there were no cases (0%) in areas affirmed as risk free.
Palabras clave: Landscape Epidemiology , Remote Sensing , Risk Map , Saint Louis Encephalitis , Argentina
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 2.732Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/42990
URL: http://geospatialhealth.net/index.php/gh/article/view/160
DOI: http://dx.doi.org/10.4081/gh.2011.160
Colecciones
Articulos(IIBYT)
Articulos de INSTITUTO DE INVESTIGACIONES BIOLOGICAS Y TECNOLOGICAS
Citación
Rotela, Camilo Hugo; Spinsanti, Lorena Ivana; Lamfri, Mario; Contigiani de Minio, Marta Silvia; Almiron, Walter Ricardo; et al.; Mapping environmental susceptibility to Saint Louis encephalitis virus, based on a decision tree model of remotelysensed data; Univ Naples Federico Ii; Geospatial Health; 6; 1; 11-2011; 85-94
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES