Artículo
M. Levin’s construction of absolutely normal numbers with very low discrepancy
Fecha de publicación:
03/2017
Editorial:
American Mathematical Society
Revista:
Mathematics Of Computation
ISSN:
0025-5718
e-ISSN:
1088-6842
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Among the currently known constructions of absolutely normal numbers, the one given by Mordechay Levin in 1979 achieves the lowest discrepancy bound. In this work we analyze this construction in terms of computability and computational complexity. We show that, under basic assumptions, it yields a computable real number. The construction does not give the digits of the fractional expansion explicitly, but it gives a sequence of increasing approximations whose limit is the announced absolutely normal number. The nth approximation has an error less than 2–2n. To obtain the $ nth approximation the construction requires, in the worst case, a number of mathematical operations that is doubly exponential in n. We consider variants on the construction that reduce the computational complexity at the expense of an increment in discrepancy.
Palabras clave:
Normal Numbers
,
Discrepancy
,
Algorithms
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - BAHIA BLANCA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - BAHIA BLANCA
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - BAHIA BLANCA
Citación
Alvarez, Nicolás Alejandro; Becher, Veronica Andrea; M. Levin’s construction of absolutely normal numbers with very low discrepancy; American Mathematical Society; Mathematics Of Computation; 86; 3-2017; 2927-2946
Compartir
Altmétricas